OSSIETZKY
universitdt|OLDENBURG
FAKULTAT Il
DEPARTMENT FUR INFORMATIK

master’s thesist

Design By Contract for Java - Revised

Johannes Rieken
April 24" 2007

— Correct System Design Group —

Responsible Supervisor: Prof. Dr. Ernst-Riidiger Olderog
Second Supervisor:  Dipl.-Inform. André Platzer
Advisor: Dipl.-Inform. Michael Moéller

In German: Diplomarbeit, Studiengang Diplom Informatik



ii



Abstract

The software development method Design by Contract (DBC) bases on the idea of having
contracts between two software modules. A client-module guarantees to fulfil certain
conditions before calling a method from a supplier-module which in return guarantees
certain properties to be true after the method call returns [Mey92]. Some programming
languages like Eiffel [ECMO06] or D [Wik07] support design by contract out of the box,
while the Java programming language [GJSB05] has minimal support for design by
contract only.

This thesis will present the design and implementation of a DBC-tool for Java, that
utilises Java 5 Annotations, the Annotation Processing Infrastructure, the Java Compiler
API, and the Instrumentation API [Sun04b, Dar06, Art06, Sune]. In contrast to existent
DBC-tools, this implementation is distinguished by a seamless integration, a rich feature
set, and by being easy to maintain. To provide a basis for the tool implementation, an
analysis of existent DBC-tools for Java precedes. Its objective is to outline different
techniques that have been used, and to have an overview of common features. Aside
from the tool implementation, a set of Java 5 annotations, that can be used to specify
the behaviour of Java programs, is defined and deployed separately.

To prove the achievements of this thesis being valuable, different case studies have
been carried out. Despite the successful realisation of these case studies, some limitations
exist. The origin and possibly workarounds for this limitations, as well as future work,
are going to be addressed.

iii



v



Acknowledgments

Many people have helped and accompanied me during this thesis and some have played
an outstanding role in more than one way. First of all, I want to thank my supervisor
Prof. Dr. Ernst-Riidiger Olderog who let my freely chose the subject of this thesis.
Furthermore, I would like to thank my advisor Michael Moéller for encouraging and sup-
porting me over the last six months. He thought me everything I now about behavioural
specification languages and advanced concepts of design by contract. I also thank André
Platzer for being my second supervisor and backup-advisor.

For a fruitful collaboration of our projects, I thank Prof. Dr. Gary T. Leavens and
Kristina Boysen. I hope that both projects keep on collaborating, so that the world of
Java programmers is going to enjoy first-class specification annotations.

My sincere gratitude goes to Daniel Schreck, Andreas Schéfer, and Michael Méller
for proof-reading and helpful suggestions. Writing 90% of a thesis is only half the work
that is to be done, thanks for helping me finishing the second half.

Further, I want to thank all my friends who accompanied me during the last five
years. Writing this thesis is only the final part of my studies, and without their support
I would have never come so far. Doing computer science is team sport, so thanks for
collaborating on assignments and in project groups, for constant encouragement, soccer
& beer, cycling, running, for blockbuster- and poker-nights.

Last, but not least, I want to thank my parents and my family for their mental and
financial support during my studies.



vi



Contents

1 Introduction

1.1 Design by Contract for Java
1.2 Goals of this Thesis
1.3 Outline

2.1.1
2.1.2
2.1.3

221
2.2.2
223

3.2.1 Build-in Assertion Facility . . . ... ... ... ... ..
3.2.2 Jass - Java with Assertions . . . . .. ... .. ... ...
3.2.3 JML - Java Modelling Language & Common JML Tools
3.2.4 jContractor . . . . . . . ...
3.25 ContractdJ . . . . ..
3.2.6 Using Aspect-Oriented Programming . . . ... ... ..
3.2.7 Using the Proxy-Pattern . . .. ... ... ... .....
3.3 Notes on Design by Contract in Java . . . ... ... ... ...
3.3.1 Front-ends . ... ... ... ...
3.32 Back-ends . ... ... o L
3.3.3 The Semantics of ’Old” . . . . .. ... ... ... .. ..
3.34 Overview . . . . . . ...

Fundamentals

2.1 Annotating Java Code
Embedded Annotations . . . ... ... ... .. ... ..
Java b Annotation . . .. .. ... ... ... ...
Processing Java 5 Annotations . . . . ... ... ... ..
2.2 Java Bytecode
Classfile-Format . . . . ... ... ... ..........
Creating Java Bytecode . . . . .. ... ... ... ....
Manipulating Java Bytecode . . . . .. .. ... ... ..

Design by Contract in Java
3.1 Design by Contract
3.2 Existing DBC Tools & Specification Languages

vii

10
15
20
20
21
22



viii CONTENTS
4 Design Decisions 51
4.1 Java 5 Annotations & Annotation Processing . . . . . ... ... ... .. 51
4.2 Validating Contracts . . . . . . . . .. . L Lo 53
4.3 Checking Contracts at Runtime . . . . . . .. .. .. ... ........ 55
4.4 The Feature Set . . . . . . . .. L 57
4.5 Naming . . . . . . . . o 58
5 Specification Annotations 59
5.1 Semantics of Annotations . . . . . ... ... 59
5.2 Main Specification Annotations . . . . . .. ... ... ... ... .. 61
5.2.1 @Invariant — jass.modern.Invariant . . . . . .. ... ... 61

5.2.2 @SpecCase — jass.modern.SpecCase . . . . . . ... . ... ..... 64

5.2.3 @Model — jass.modern.Model . . . . . ... ... L. 70

5.2.4 @Represents — jass.modern.Represents . . . . . .. ... ... 71

5.2.5 @Pure — jass.modern.Pure . . . . . ... ... L. 72

5.2.6 @Helper — jass.modern.Helper . . . . . . ... ... ... 74

5.3 Flyweight Specification Annotations . . . . . . .. .. ... ... ..... 74
5.3.1 Desugaring, Level 1 . . . . . . ... ... .. . 75
5.3.2 @Pre —jass.modern.Pre. . . . . . .. ..o 75

5.3.3 @Post — jass.modern.Post . . . . ... ... L. 76
5.3.4 Desugaring, Level 2 . . . . . .. .. oo oo 7
5.3.5 @NonNull — jass.modern.NonNull . . . . ... ... ... ... ... 81

5.3.6 @Length — jass.modern.Length . . . . . . ... ... ... ...... 82
5.3.7 @Min — jass.modern.Min . . . .. ... 82

5.3.8 @Max — jass.modern.Max . . . . .. ... 83

5.3.9 @Range — jass.modern.Range . . .. ... ... .. .. ... ..., 84

5.4 Specification Expressions . . . . . ... ..o oo 85
54.1 @Result . . . ... . 85
5.4.2 @Signal . . ... L 85
543 QOId . . ... 86
5.4.4 @Q@ForAll . . . . . . .. 86
5.4.5 Q@Exists . . . . .. 87

5.5 Container Annotations . . . . . . . . . .. ..o 87
5.6 Outlook —JML 5 . . . . . .. . e 87
6 The Modern Jass Tool 89
6.1 Architecture . . . . . ... 89
6.2 Creating Contract Code . . . . . . . . . . . ... . 91
6.3 Avoiding Endless Recursion . . . . . . .. ... ... 96
6.4 Limitations . . . . . . . . . . . e 98
6.4.1 Missing Debug Information . . . .. .. ... ... ... ...... 98
6.4.2 Limited Line Number Table . . . . . . . . .. ... ... .. .... 99
6.4.3 Maximum Number of Method Specifications . . . . . . .. ... .. 99
6.4.4 Annotation Processing for Annotated Types Only . . ... .. .. 100



CONTENTS

6.4.5 Anonymous Classes . . . . . . ... .. ...
6.5 Integrating Modern JassintoIDEs . . . . .. .. ... ... ... .....

6.5.1 Eclipse

6.5.2 NetBeans & IntelliJ Idea . . . . . . . . . . .. ... ... .. ...
6.6 JML Converter . . . . . . . . . .

7 Case Studies

7.1 Eat Your Own Dog Food . . . . .. ... ... .. .. .. ... .. ...

7.2 Ring Buffer .

7.3 The Automated Teller Machine . . . . . . . . . . . . . . ... ......

8 Conclusion
8.1 Future Work
8.2 Related Work

Glossary

ix

100
100
100
101
101

107
107
107
111

115
117
118

119



CONTENTS



List of Figures

1.1
1.2

2.1
2.2

2.3
2.4
2.5

3.1

3.2

4.1

4.2

5.1

6.1
6.2
6.3
6.4
6.5
6.6
6.7

The proposed concept of a new DBC implementation for Java. . . . . ..
Screenshot of the Eclipse IDE displaying a compilation error which has
been created by an annotation processor. . . . .. ... ... ... ....

Reflection-capabilities in Java (selection). . . . ... .. ... ... .. ..

The javax.annotation.processing-package which hosts the API for JSR 269-
based annotation processing. . . . . . ... ... L o oL

Abridged view of the package javax.lang.model.element. . . . . . . . . . ..
Integration of an annotation processor in NetBeans. . . . . ... ... ..
Structural view of a class file. . . . . . . . .. ...

The proxy-object Foo$Proxy stands-in for Foo and checks pre- and post-
conditions for method bar. . . . . . . ... L o

A pre-processor based approach. . . . ... .. ... ... L.

UML activity diagram which shows the steps performed to validate a
contract. . . . . .. oL oL e e

UML activity diagram which shows the steps performed to enable contract
checks at runtime. . . . . . ... Lo

UML activity diagram showing how @Pure can be checked. . . . . . . ..

Component diagram of the Modern Jass architecture. . . . . . .. .. ..
UML sequence diagram of the interaction with the contract context.

Modern Jass extensions to Eclipse. . . . . . . . . ... oo
A compilation error in a post-condition, displayed in Eclipse. . . .. . ..
A compilation error in a post-condition, displayed in NetBeans. . . . . . .
A compilation error in a post-condition, displayed in Idea. . . . . . . . ..
Preview of the changes that are going to be applied by the converter. . . .

xi



xii LIST OF FIGURES

7.1 A ring buffer with 12 slots - in points to the next write location and out

to the next read location. . . . ... ... ... ... . 0oL 108
7.2 Class diagram for the bank [MORWO7]. . . ... ... ... ... ..... 111
7.3 Class diagram for an automated teller machine [MORWO7]. . . . . .. .. 112



Listings

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12

3.13
3.14
3.15
3.16

Javadoc-documentation of a method return value.. . . . . . . . ... ... 9
A doclet-tag representing a pre-condition. . . . . .. ... ... 9
A doclet-tag, throws, with two semantics. . . . . ... ... ... ..... 9
Grammer of the annotation type definiton. . . . . . ... ... ... ... 10
The type-definition of a pre-condition annotation. . . . . . . . ... .. .. 11
An annotation which is applicable to methods only. . . . . . . ... .. .. 12
Using the PreCondition-annotation. . . . . .. .. ... ... ... .... 12
Violating the rules for annotation application. . . . . . .. ... ... ... 13
A container-annotation for the @PreCondition-annotation. . . . . . . . .. 13
Applying a container-annotation. . . . . . . ... ... 13
Accessing annotation values at runtime via reflection. . . . . .. ... .. 17
Method signature of a premain-method. . . . . .. ... ... ... ... 23
The command used to enable dynamic bytecode instrumentation. . . . . . 23
Using the assert-keyword. . . . . . .. . ... ... .. ... ... . .... 27
The ‘decompiled’ assert-statement. . . . . . . .. ... ... ... ..... 28
Invariant in Jass. . . . . . . . . ... 28
Pre-condition in Jass. . . . . . . ... 29
Post-condition in Jass. . . . . . . ... ... 29
Loop-variant and loop-invariant in Jass. . . . . .. ... ... ....... 29
The forall-quantifier in Jass. . . . . . . . . ... ... oL 29
The retry and rescue construct in Jass. . . . . . . . ... ... L. 30
Invariants and history constrains in JML. . . . ... ... ... ... ... 31
A method specification in JML. . . . . ... ... 32
Inheritance and refinement of specifications in JML. . . . ... ... ... 33
Invalid post-condition — a public specification may not refer to a private

member. . . ... e e e 33
A model variable defined in JML. . . . . ... ... ... ... .. 34
Assigning a value to a model variable. . . . ... ... ... ........ 35
A post-condition using the model variable. . . . . . . ... ... ... ... 35
A method implementing an invariant. . . . .. ... ... ... ... ... 36

xiii



Xiv

3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
5.1
5.2
5.3
5.4
9.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12

5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25
5.26
5.27
6.1

6.2

6.3

6.4

LISTINGS

A method explicitly implementing a post-condition. . . . .. .. ... .. 36
Invariant in Contract4J. . . . . . . . . . . .. ... 37
Pre-condition in Contract4J. . . . . ... ... ... ... .. ... .... 38
Post-condition in Contract4J. . . . . . . . . . ... ... ... ... ..., 38
Inheritance and refinement in Contract4J. . . . . . . ... ... ... ... 39
An unsophisticated logging aspect written in AspectJ. . . . . . ... ... 40
Method assertions and class-invariant for a buffer. . . . . ... ... ... 41
Using custom javadoc-tags to specify assertions. . . . . . . ... ... ... 42
A contract-class created by adoclet. . . . .. ... ... ... ... ... 43
Manually implementing a pre-condition is not desirable. . . . . . . .. .. 44
Invariants in Modern Jass. . . . . . . . . . ... 61
An example of method specifications. . . . . . . ... ... ... ... ... 64
Interface of a buffer not allowing null. . . . . . ... ... ... ... ... 68
Subtype of IBuffer allowing null. . . . . . .. ... ... 000 68
A method specification that does not define exceptional behaviour. . . . . 69
A method specification that defines exceptional behaviour. . . . . . . . .. 70
Side-effect free equals method of a singleton class. . . . . .. ... .. .. 72
Using @Helper-annotation to avoid invariant checks. . . . .. ... .. .. 74
Desugaring a level 1 flyweight annotation into a @SpecCase annotation. . 75
The flyweight annotation @Pre. . . . . . . . .. ... ... ... ... ... 76
A post-condition expressed with a flyweight specification annotation. . . . 76

Desugaring level 2 flyweight annotations into pre- and post-conditions.
Firstly, the method parameter annotation is desugared, and secondly the

method annotation is desugared. . . . . .. ... . ... ... ... ... . 78
Having two distinct pre-conditions. . . . . . . . ... ... ... ... ... 80
Having a single pre-condition which never holds. . . . . . .. .. ... .. 80
A level 2 flyweight annotation expressing an invariant. . . . . . .. .. .. 81
Using the NonNull annotation with a method parameter. . . . . . . . . .. 81
Usages of the @Length flyweight annotation. . . . . . . .. ... ... ... 82
The @Min flyweight annotation. . . . . . . . .. ... ... .. ... .... 82
The @Max flyweight annotation. . . . .. ... ... ... ... ..... 83
The @Range flyweight annotation . . . . . . .. .. ... ... ... .... 84
Accessing the return value of a method in its post-condition. . . . . . .. 85
An exceptional post-condition accessing its cause. . . . . . .. .. .. ... 85
Using the pre-state values in a post-condition. . . . . . . . ... ... ... 86
Grammar of the @ForAll specification expression. . . . . . . ... ... .. 86
The @ForAll expression used with an invariant. . . . ... ... ... ... 86
Grammar of the @Exists specification expression. . . . . ... ... .. .. 87
Pre-condition that uses the @Exists specification expression. . . . . . . .. 87
Scheme for an invariant contract method. . . . . . . ... ... ... ... 92
Scheme for a pre-condition contract method. . . . .. ... ... .. ... 93
Scheme for a post-condition contract method. . . . . . . ... .. ... .. 93

Scheme for an invariant contract method. . . . . . . . . . .. .. .. ... 93



LISTINGS XV

6.5
6.6
6.7
6.8
6.9
6.10
6.11

6.12
6.13
6.14
6.15
6.16
7.1

7.2

The buffer example. . . . . . . . .. . ... o 93
The buffer example — after desugaring level 1 annotations. . . . . . . . . . 94
The buffer example — after desugaring level 2 annotations. . . . . . . . .. 94
The buffer example — after specification expression translation. . . . . . . 95
Contract method for an invariant. . . . . . .. ... ... ... ...... 95
The buffer example — transformed type. . . . . . . . ... ... ... ... 95
When checking contracts, an indirect recursion between both methods is

introduced. . . . . .. Lo 96
Stack trace showing how the contract context prevents endless recursion. . 97
An abstract method that uses the @Name annotation. . . . . . ... ... 98
An abstract method that uses the param/N naming scheme. . . . . .. .. 99
When violating the pre-condition, the JVM should point at line 2. . . . . 99
Retrieve all invariants of a class-type. . . . . . . . ... ... ... .... 104
Declaration and specification of the ring buffer interface. . . . . . . . . .. 109

Implementation of the ring buffer interface (shortened). . . . .. ... .. 110



xvi LISTINGS



Chapter

Introduction

Over the last decades complexity of software systems increased drastically and there
are numerous examples of software projects which failed due to this complexity. Con-
sequently, methods to deal with complexity of software systems have been developed.
They help to understand and prove, what a large software system is doing, by specifying
its behaviour. Design by Contract (DBC) is such a methodology as it treats two software
components as client and supplier which have a contract specifying how they interact.
Originally design by contract was part of the Eiffel programming language [ECMO06],
but nowadays other programming language implement design by contract, too. How-
ever, Java has no native support for design by contract, and developers must turn to
third party tools.

1.1 Design by Contract for Java

In December 1990 at Sun Microsystems Inc., Patrick Naugthon, Mike Sheridan, and
James Gosling started the Green Project. It was launched to figure out how comput-
ing might develop in future and what markets will grow [Byo]. As the members of the
green project considered the consumer and mobile devices to be a quick growing and
important market, the need for an appropriate programming language came up. Hence,
a programming language named Oak was developed. Oak was a platform independent,
object-oriented, general purpose programming language with support for design by con-
tract [Fir94]. Later, Oak evolved to what is known as the Java programming language,
and although most features from Oak have been adopted or improved by Java, design
by contract got lost. Rumours say, this happened due to a tight deadline.

Subsequently, numerous requests for enhancement were submitted to Sun, making
DBC one of the most requested enhancements. With the release of Java 1.4, Sun added
a simple assertion facility to the Java programming language [Blo99]. However, this tiny
step towards design by contract disappointed many developers and strengthened the
perception that Java will never have native support for design by contract. The wish

1



2 CHAPTER 1. INTRODUCTION

for a powerful design by contract implementation for Java still exists and dominates the
top 25 RFE’s (Request for Enhancements) [Sup01]. To overcome this, many third-party
projects have been started, all bringing design by contract to Java. Still, no project
could reach a bigger group of software developers and, thus, the application of design by
contract in Java can only rarely be seen.

1.2 Goals of this Thesis

Currently, a lot of design by contract implementations for Java exist. Examples, to name
only a few, are jContractor [KA05], Contract4J [Asp06], Jass [Bar99, BEMWO01], and the
Java Modelling Language (JML) [BCCT05]. All these tools implement different concepts
to output Java programs enriched with assertions but only a few of them integrate
seamlessly into the Java platform and today’s development environments. A common
approach to implement design by contract is to use a pre-processer or a specialised
Java compiler in combination with contracts that are embedded in some kind of Java
comment. Alternatively, a tool might ask for contracts that are implemented as Java
methods sticking to some kind of naming pattern. Although most tools haven proven to
be powerful and bring design by contract to Java, they are not wide spread. This might
be due to tool chains which are hard to use or maintain, missing IDE integration, or
complicated syntax additions. To give an example for a tool that is hard to maintain,
the Common JML Tools can be named. They provide a custom compiler for the Java
Modelling Language, and it took almost two years before this compiler was capable of
handling Java 5 syntax.

@Requires(“n > 0.0")
public double sqrt(double n){...

alue |

assertion violated

>

S

= Annotation Processing Tool

° parse and check annotations

o

& javac

il

0 Bytecode

£
Java Instrumentation API
instrument bytecode

java

Running Program

Figure 1.1: The proposed concept of a new DBC implementation for Java.

The goal of this thesis is to leverage support for design by contract in Java by de-
signing and implementing a DBC-tool, that solely uses off-the-shelf Java constructs and
focuses on functional, as well as, on non-functional features. Focusing on non-functional
features, like ease of use, a seamless integration, and a low maintenance costs, makes



1.2. GOALS OF THIS THESIS 3

this approach different from existent tools, which aimed at functional features only. The
main contribution of this thesis will be a DBC implementation that offers a rich feature
set at low maintenance costs, and that integrates seamlessly into development environ-
ments and build processes. In particular, seamless integration means, that contracts are
validated as part of the compilation process, and that contracts are enforced when the
program is executed without further user interaction.

Recently added language features, such as Java 5 Annotations, the Annotation Pro-
cessing Infrastructure, the Java Compiler API, and the Java Instrumentation API are
going to be utilised to achieve these goals [Sun04b, Dar06, Art06, Sune]. Figure 1.1
shows briefly how these technologies are combined to form a new design by contract
tool. It can be seen that the annotation processing environment, which is a plug-in for
the Java compiler, is going to be used to validate contract annotations, and that the
bytecode instrumentation API is going to be used to enforce contracts. Both technolo-
gies, annotation processing and bytecode instrumentation, are part of the standard Java
platform and enable DBC to be a first class citizen in the Java world. Figure 1.2 is

5 public interface IGreeting {
6

@ 7 @SpecCase( post = W}

j public void hello(; @Result can not be used because return type of hello is void
10 1} Press 'F2' for focus,|
11

Figure 1.2: Screenshot of the Eclipse IDE displaying a compilation error which has been
created by an annotation processor.

an example of this seamless integration as it shows a compile error that results from
an invalid annotation value. For the user this error is not distinguishable from other
compiler errors and will be generated in all IDEs, or when invoking the Java compiler
manually. This new DBC approach is not specific to a certain IDE but uses the extension
mechanisms provided by the standard Java platform.

The work of this thesis can be split up in several subtasks that are outlined in the
following.

1. Examination of Java’s features and existing DBC tools. In order to design
a new tool for DBC in Java, existing tools and approaches must be examined. Fur-
ther on, lately added features of the Java programming language must be evaluated
to prove them applicable for realising DBC. These examinations are undertaken
to expose the advantages and disadvantages of existing design by contract tools,
and to identify the limitations of Java annotations and the annotation processing
environment.

2. Defining a set of specification annotations. Contracts and behavioural spec-
ifications are going to be expressed as Java annotations. Consequently, a set of
annotations, that allows to express various assertions in a Java program, must be



4 CHAPTER 1. INTRODUCTION

defined. These annotations shall not be bound to a certain tool implementation,
so that third parties can use and process them as well.

3. Designing & Implementing a new DBC-tool. A DBC-tool implementation,
that is capable of processing the specification annotations, is to be designed and
implemented. It must satisfy the following two main goals: First, contracts in
annotations must be validated at compile time so that a programmer is notified
about invalid contracts as soon as possible. Second, contracts must be enforced
at runtime so that a contract violation causes an error. On top, the tool must be
designed to integrate seamlessly into the Java world, meaning that it integrates
into developments environments and build processes.

4. A converter for the Java Modelling Language. The Java Modelling Lan-
guage (JML) has a rich feature set and is relatively wide spread so that it is desir-
able to align with it. As part of the implementation work, a prototypic converter
for the Java Modelling Language is developed. It translates JML specification into
corresponding Java 5 annotations.

5. Case studies. The value of the new DBC-tool is going to be demonstrated in the
realisation of different case studies. The goal of these case studies, is to prove the
tool being as powerful as existent tools when looking at the raw feature set, and
to prove that the implemented concept provides a superior set of non-functional
features, like ease of use and seamless integration.

1.3 Outline

Chapter 2 introduces the fundamentals of the Java programming language that are
required for the understanding of this thesis. Thereby, the focus is put on recently
added Java features and Java bytecode. A basic understanding of the Java programming
language is assumed.

In Chapter 3, design by contract in general and how it has been implemented for
Java is getting introduced. At the end, a classification and characterisation of existing
approaches and tools is presented.

Based on the results of the examinations, in Chapter 4, the creation of a new design by
contract tool is reflected. The discussion of different approaches for contract validation
and enforcement, as well as the identification of necessary functional requirements is
presented.

A set of specification annotations is presented in Chapter 5. A specification for every
single annotation describes what semantics it has, and how it is to be validated. Tool
implementers shall be guided by this specification, when they implement a tool, that
works with these specification annotations.

The main contribution of this thesis, a DBC-tool that implements the specification
annotations, is introduced in Chapter 6. It implements the above concept to offer non-
functional features, that existent DBC-tools do not provide, and implements a rich fea-



1.3. OUTLINE )

ture set. Further, a converter to transform assertions from the Java Modelling Language
into equivalent Java 5 annotations is presented.

In Chapter 7 different case studies, that have been carried out, are presented. These
case studies will prove the implemented DBC concept being valuable in two ways: First,
it offers a rich feature set, matching up with or surpassing most existent DBC imple-
mentations, and, secondly, it offers non-functional features that have not been seen in
other DBC-tools before. These non-functional features are a seamless integration into
whatever tool or environment, and minimal maintenance costs.

Final remarks about the results of this thesis, about future work and related work
can be found in Chapter 8.



CHAPTER 1. INTRODUCTION



Chapter

Fundamentals

For the understanding of this thesis the Java programming language plays a prominent
role and previous knowledge about Java is assumed. Still, in this chapter some important,
but rather uncommon, aspects of Java and Java application programming interfaces are
highlighted and explained. Starting with a gentle wrap-up of Java, this chapter focuses
on annotating Java code (2.1.1 and 2.1.2) and processing annotations(2.1.3). The second
part of this chapter is about Java Bytecode, mainly about ways how to create and
manipulate bytecode (Section 2.2.2 and 2.2.3).

The Java Programming Language

The Java programming language is an object oriented platform inde-
pendent programming language, which is not specialised in design or application. Thus,
Java is wide-spread across different computing platforms ranging from consumer devices
like cellphones to high-end server applications. Java is owned and maintained by Sun
Microsystems and was designed under the lead of James Gosling. Development started in
the early 90s as a project called Oak targeting embedded consumer-devices and evolved
into the Java programming language, which has been released in 1995 [GJSBO05].

Due to the rise of the world-wide web and Java’s applet technology, it was initially
perceived as the programming language for the internet and quickly gained popularity.
Nowadays, Java is one of the most popular programming languages [BV06] and plays a
prominent role for server, client, and consumer device applications. The sixth version
of Java has been released in December 2006. Around that time, the Java platform has
been made available under the General Public License version 2 (GPL) which makes

7



8 CHAPTER 2. FUNDAMENTALS

most of the Java technology open source [Sun06a]. Still, long before making Java open
source, Sun started the Java Community Process (JCP) which gives third parties the
opportunity to participate in the Java development process by originating Java Specifi-
cation Requests (JSR)[Jav98|. JSRs are standardised documents which get approved or
declined in a transparent process by the JCP Executive Committee. Since its foundation
in 1998, all new Java features and add-on libraries went through the JCP. The following
JSRs are important for this work:

e JSR 41 - A simple assertion facility [Blo99].

e JSR 175 - A Metadata Facility for the JavaTM Programming Language [Blo02].
e JSR 269 - Pluggable annotation processing API [Dar06].

e JSR 199 - Compiler API [GvdA02].

The following section will focus on annotations and deals with JSR 175 and JSR 269.
The assertion facility, JSR 41, is introduced in Chapter 3, whereas the Compiler API
(JSR 199) is introduced at the end of this chapter.

2.1 Annotating Java Code

According to the Oxford American dictionaries an annotation is ‘a note of explanation
or comment added to a text or diagram’. Since source code is text only, this definition
covers what semantics annotations in Java code have. However, from a technical point
of view its not defined how an annotation looks like, and how annotations are added to
Java code. This sections will introduce annotation techniques for Java source code. First
of all, when talking about Java and annotations, one has to differentiate between an era
prior and subsequent to Java 5. Prior to Java 5, annotations could only be embedded
in Java comments and needed to be processed by an external tool. A popular example
is the Javadoc tool and doclets which will be introduced in Section 2.1.1. With Java 5
the annotation mechanism in Java was reviewed and a new ‘general purpose annotation
facility’ [Sun04b] was added to Java (Section 2.1.2).

2.1.1 Embedded Annotations

The nature of a comment in a programming language is to embed annotations. Such an
annotation might be a note for programmers, documentation, or it might be intended
to be processed by external tools. For Java, the doclet API [Sunb] exists and enables
programmers to write custom processors for comment-based annotations. A prominent
example that uses the doclet API is the Javadoc tool, which creates HTML documenta-
tion from source code. In Listing 2.1 the return value of a method is documented with
the text following the doclet-tag @return.

More generally speaking, a doclet may specify a set of tags which it is able to process.
The output of a doclet is not limited to certain file formats or types making it a universal



2.1. ANNOTATING JAVA CODE 9

IEE

*

% @return Returns a string.

*/

public String toString(){ ... }
Listing 2.1: Javadoc-documentation of a method return value.

IEE

*

* Q@pre obj != null

*/

public void add(Object obj){ ... }

Listing 2.2: A doclet-tag representing a pre-condition.

processor for Java source code. For instance, a doclet could have defined the pre-tag
representing a pre-condition (see Listing 2.2). The content of the pre-tag could be used
to create a type that actually implements the pre-condition.

Limitations

A consequence of the fact that annotations reside in comments only, is that they get
lost during compilation. Hence, further processing e.g. with reflective programming
(Section 2.1.3) or bytecode instrumentation (Section 2.2.3) is not possible. In addition,
the content of doclet-tags are Strings in a doclet-specific format which might be subject
to further processing like parsing. Parsing can be troublesome when different doclets
use tags with the same name but different semantics. For instance, consider Listing 2.3
were two different semantics of doclet-tags collide.

EE

*

x @throws NullPointerException In case the param <i>obj</i> is null.
* @throws NullPointerException —> obj = null

*/

public void add(Object obj) throws NullPointerException { ... }

Listing 2.3: A doclet-tag, throws, with two semantics.

For the first, the throws-tag contains a fragment of the documentation created by the
HTML-doclet. Secondly, throws is used to define a boolean expression which might be
evaluated by a DBC-tool.

Other embedded annotation

Aside from doclet-tags and the doclet API, third parties are free to define their own
comment-based annotations, and to process them in a propriety fashion. Usually, such




© 00 O Ut W~

10 CHAPTER 2. FUNDAMENTALS

tools include a parser for Java source code which is capable of locating and preparing
comment-based annotations for further processing.

2.1.2 Java 5 Annotation

To overcome the shortcomings of comment-based annotations, a new annotation facility
for Java was designed and shipped with Java 5 for the first time. In terms of the Java 5
annotation facility, an annotation is a language type, similar to interfaces, making it a
first class Java citizen being easy to process and more flexible to apply. This section will
introduce Java 5 annotations by outlining how annotation types are defined and how
they are added to a set of annotation targets. Subsequently, Section 2.1.3 will show how
Java 5 annotations can be processed.

Defining Java 5 annotations

Java is a strongly typed language which means that the type of a variable or expression
can be determined at compile-time. Basicly, there are two fundamentally different kinds
of types.

e Primitive Type: Primitive types are boolean and numerical values. They do not
share data with other primitive types and are made up from the following primitive-
types which differ in size and semantics: boolean, char, byte, short, int, float, long, and
float.

e Reference Type: A reference type is either a Class type, an Interface type, or an Array.

In addition to the reference types above, there are some specialised types. Such are the
enum-type and the annotation-type (chapter 4 in [GJSB05]). The latter one is a decent of
the interface type and defined by the grammer in Listing 2.4.

AnnotationTypeDeclaration:
InterfaceModifiersopt @ interface Identifier AnnotationTypeBody

AnnotationTypeBody :
{ AnnotationTypeElementDeclarations_opt }

AnnotationTypeElementDeclarations:
AnnotationTypeElementDeclaration
AnnotationTypeElementDeclarations AnnotationTypeElementDeclaration

AnnotationTypeElementDeclaration:
AbstractMethodModifiers_opt Type Identifier ( ) DefaultValue_opt ;
ConstantDeclaration
ClassDeclaration
InterfaceDeclaration
EnumDeclaration
AnnotationTypeDeclaration

)

DefaultValue:
default ElementValue

Listing 2.4: Grammer of the annotation type definiton.




N O Utk W N

2.1. ANNOTATING JAVA CODE 11

Aside from nested types or constants, an annotation type definition consists of the @in-
terface-keyword (line 2) and an optional list of method-like declarations (line 12). Similar
to interfaces, methods declared in annotation types are abstract, which means that they
do not allow every method modifier (e.g. private, static) and do not have a method body.
However, method declarations in annotation types obey further restrictions making them
distinct from usual method declarations.

1. The return type of a method in an annotation type must be either a primitive type,
an enumeration, the types java.lang.String or java.lang.Class, an annotation different
from the annotation itself, or an array of one of the previous types.

2. An annotation type may define a default return value for its methods using the
default-keyword.

3. Methods in annotation types cannot define parameters and cannot have a throws-
clause.

Due to the differences of methods in annotations and other reference types, and due to
their informative nature, methods of annotation types are also called attribute. Besides,
the annotation type cannot be generic and cannot extend other types. An example of
an annotation type-definition is shown in Listing 2.5.

Qinterface PreCondition {

String value ();
Visibility visibility () default Visibility .PUBLIC;

enum Visibility = { PUBLIC, PROTECTED, PRIVATE }
}

Listing 2.5: The type-definition of a pre-condition annotation.

Starting with the @interface-keyword in line 1, this annotation type declares two attributes
and the nested enumeration-type Visibility (line 6). The value-attribute, line 3, returns
instances of java.lang.String but does not declare a default value. A default value can be
found at the visibility-attribute in line 4 which returns Visibility. PUBLIC if no other value
gets assigned to it.

Annotation targets

The elements of a Java element, where an annotation can be placed at, is called anno-
tation target. As defined in the Java language specification [GJSBO05] an annotation is
a modifier and, hence, can be placed at:

e Type definitions (E.g. classes, interfaces, enum-types, and annotations!),

e Fields (this includes enum constants),

If the target is an annotation type itself, the term meta-annotation is used.




O © 00O Ut W N

—_

Tk W N~

12 CHAPTER 2. FUNDAMENTALS

Constructors,

Methods,

Parameters of methods and constructors,

Local Variables,

Packages.

By default, an annotation can be placed at all targets from the list above. However, there
are some pre-defined annotations which restrict the application of an annotation. For
instance, the meta-annotation java.lang.annotation.Target can be used to denote a subset
of above targets for an annotation type. Listing 2.6 shows a modified version of the
PreCondition-annotation which is restricted to be used with methods only (see line 3).

import java.lang.annotation. Target;

‘ Q@Target ( ElementType.Method )
public Qinterface PreCondition {

String value ();
Visibility visibility () default Visibility .PUBLIC;

enum Visibility = { PUBLIC, PROTECTED, PRIVATE }
}

Listing 2.6: An annotation which is applicable to methods only.

Application of Annotations

Above paragraphs have shown what a Java 5 annotation is and how annotation types
can be defined. This section presents how annotations are applied. Listing 2.7, line 3,
shows the application of the @PreCondition-annotation. The attribute value is assigned
with the String ‘obj != null’ whereas the attribute visibility remains unchanged so that it
is still assigned to its default value (Visibility.PUBLIC).

public class Buffer {

@PreCondition(value = "obj = null”)
public void add(Object obj) { ... }
}

Listing 2.7: Using the PreCondition-annotation.

Note, since an annotation is understood as a modifier, public could appear before @Pre-
Condition. However, coding-guidelines recommend to start with annotations.



0~ O Tk Wi

©

2.1. ANNOTATING JAVA CODE 13

Despite the attractiveness of annotations, their application is restricted by mainly two
rules [GJSBO5).

1. A certain annotation type can be placed at its target only once, otherwise a compile
error is raised.

2. The values of annotation attributes must be compile time constants, otherwise a
compile error is raised.

Listing 2.8 shows the violation of these rules, as the value which is going to be assigned
to the attribute value is not a compile time constant (line 4) and, as the PreCondition-
annotation is used twice (line 3 and 6).

public class Buffer {

Q@PreCondition (

value = foo (),
priority = Visibility .PRIVATE)
Q@PreCondition(value = "obj != null”)
public void add(Object obj){ ... }
public String foo(){
return "|'m not a compile—time constant!”;
}
}

Listing 2.8: Violating the rules for annotation application.

If an annotation shall be used more than once for a single target, it needs to be wrapped
into another annotation, defining a single attribute which is an array of the desired
annotation type. An example of such a container-annotation is given in Listing 2.9.
Listing 2.10 shows how the annotation is used.

Qinterface PreConditions {

@PreCondition [] value ();
}

Listing 2.9: A container-annotation for the @PreCondition-annotation.

@PreConditions (

value = {
Q@PreCondition(value = "obj = null”),
@PreCondition(value = "1lisFull()")

)

public void add(Object obj){ ... }

Listing 2.10: Applying a container-annotation.




14 CHAPTER 2. FUNDAMENTALS

Inheritance

Although being modifiers, annotations are not inherited when an annotated type is get-
ting subclassed. However, there is one exception of this rule. The Java Standard Plat-
form defines the meta-annotation java.lang.annotation.Inherited which enables annotation
inheritance. The semantics of the Inherited-annotation is that if

the user queries the annotation type on a class declaration, and the class
declaration has no annotation for this type, than the class’s superclass will
automatically be queried for the annotation type [Sunc].

This query process will be repeated for all supertypes, but will skip interfaces. Because
of this very limited support for inheritance, one might say that inheritance of Java 5
annotations is an open issue that is left to third party developers.

Shorthands

When using annotations, the Java language specification defines syntactical shorthands
[GJSBO05]. One can be put in for empty annotations, which are annotations without any
attribute, another one eases the use of annotations with a single attribute. A third one
simplifies the use of attributes that expect an array.

e If an annotation defines no attributes (a marker annotation) or all attributes do
have default values, the round brackets are optional. Consider the annotation
©NonNull which can be applied either way.

public Qinterface NonNull{ /xempty, no attributes =/ }

One can type out the open and closing brackets or
void add(@NonNull() Object obj){ ... }

simply omit them.
void add(@NonNull Object obj){ ... }

An annotation which does not define attributes, like the @NonNull-annotation, is
called marker annotation.

e [f there is only one attribute without a default value and its name is value, or
the only attribute is called value, the name of can be omitted. For instance, the
@PreCondition-annotation (Listing 2.6, page 12) is suitable for this shorthand. It
can be applied either way, typing out the name of the attribute and the '='-sign,

@PreCondition(value = "obj != null")
void add(Object obj){ ... }

or omitting both, leaving the value only.

@PreCondition (" obj != null")
void add(Object obj){ ... }



2.1. ANNOTATING JAVA CODE 15

Annotations like the ©@PreCondition-annotation are called single element annota-
tions. However, as soon as an attribute, different from value, is getting assigned,
all attributes must be qualified with their names.

e When an attribute of an annotation is defined as an array of elements but only
a single element exists, the array creation brackets can be omitted. To give an
example, the @PreConditions container annotation (Listing 2.9) has a single attribute
which data type is an array of the @PreCondition annotation. In case, the array as
length one, the annotation can be written either way. First with the curly brackets,

Q@PreConditions( value = { ©@PreCondition( value = "obj != null”) })
void add(Object obj){ ... }

or the shortened way omitting the brackets and attribute names.

@PreConditions( Q@PreCondition(”obj = null”) )
void add(Object obj){ ... }

Outlook 1: JSR 308 - Annotations on Java Types

The Java specification request 308 proposes to allow annotations on other types than
just class, method, field, and variable declarations [CE06]. An example is to annotate
an object creation statement with an annotation expressing that the object is read-only:

Foo foo = new ©@ReadOnly Foo();

JSR 308 is targeted for Java 7 and currently new targets for annotations are discussed. At
this point merely annotations on type related constructs like variable/field declaration,
new, instanceof, extends, or throws are discussed, but annotations for loops or arbitrary
blocks are also on the agenda.

Outlook 2: JSR 305 - Annotations for Software Defect Detection

The goal of JSR 305 is to assemble a set of annotations for ‘software defect detection’
which is to be included into the Java standard platform [Pug06]. Currently, different
software vendors and third party developers use their own annotations for very similar
purposes, e.g. a ©@NonNull annotation. The goal of JSR 305 is to ease the burden of using
such an annotations by defining a standard set and, thus, promoting compatibility.
Initially, the annotations of JSR 305 will bundled in a standalone package, but at the
long run it is targeted for Java 7.

2.1.3 Processing Java 5 Annotations

In general, working with annotations and their values is called annotation processing.
Java 5 annotations can be processed at runtime via Java’s reflection capabilities or they



16 CHAPTER 2. FUNDAMENTALS

can be processed using an annotation processing tool. The first part of this section
gives an idea of the use of reflective programming, and the second part emphasises the
annotation processing environment shipped with the Java development kit.

Reflective Programming

Reflection, or sometimes called introspection, is a programming language feature which
empowers a program to inspect and maybe even modify its own structure and variable
values at runtime. The programming paradigm of reflective programming emphasises
the use of reflections. Java supports reflection natively through classes in the package
java.lang.reflect along with the java.lang.Class-class.

At runtime, every object in the virtual machine refers to an instance of java.lang.Class
which can be retrieved by calling java.lang.Object.getClass(). It represents the type def-
inition of an object, as defined in source code, and allows to explore and modify its
structure. Figure 6.7 shows a selection of types and methods from the reflection API
and how the types relate to each other.

(3 java.lang.Class

getAnnotations()
getConstructors()
getFields()
getMethods()

1 1\t

0.* |(® java.lang.reflect.Method

getAnnotations()
getExceptionTypes()
getName()
getReturnType()

o..1‘ )

(® java.lang.reflect.Field

get() 0.% 0..x

set()
getAnnotations()

<<interface>>
0 java.lang.reflect.Annotation

Figure 2.1: Reflection-capabilities in Java (selection).

The recommended use of reflection is to accommodate developer tools like debuggers,
object inspectors, or graphical user-interface builders, but reflections may also be used
to inspect annotations and their attribute values. Listing 2.11 gives an example of how
to obtain the PreCondition-annotation (see Listing 2.6 and 2.7) and how to access its
attribute values.

In line 1 and 2, a reference of the PreCondition-annotation is obtained and stored into
a local variable. Line 5 demonstrates that annotation attributes can be accessed via



U W N =

2.1. ANNOTATING JAVA CODE 17

Method method = Buffer.class.getMethod(”add”);
PreCondition reference = method.getAnnotation (
PreCondition . class);

assert reference.value().equals("obj = null”);

Listing 2.11: Accessing annotation values at runtime via reflection.

standard method calls and asserts that the value of the attribute did not change.

Pluggable Annotation Processing API

In addition to reflective programming, annotations can be processed by an external tool
or processor which can read annotations from source code and bytecode. The Java
5 software development kit delivered by Sun Microsystems contains such a tool - the
annotation processing tool, shortend APT [SunO4a]. It consists of an API for which
annotation processors are developed, and an executable which runs these annotation
processors. However, the annotation processing tool (APT) is not part of the Java
Standard Platform which means that other Java vendors are not obligated to provide
such an annotation processing tool. Although Sun made APT open source, the Java
specification request 269 (JSR 269) came to life. Its objective is to replace APT with
a processing environment that is integrated into the Java compiler, and that is part of
the official Java Standard Platform [Dar06]. Since version 6, the JSR 269 is part of
the official Java release, coexisting with the annotation processing tool which will not
be available in future Java versions. Due to that and the advantages of JSR 269, the
outdated APT will be not considered in this thesis.

JSR 269 has been launched with the title ‘pluggable annotation processing API’
which is good summary of its goals. Its objective is to provide an annotation processing
facility which is integrated into the Java compiler and easy to manage. To do so, the
program javac was extended with the ability to discover and run annotation processors.
By default, every annotation processor, being present on the classpath, is executed when
compilation is performed. In addition, a couple of program switches have been added to
javac in order to get a fine-grained control over the annotation processors [Sun06b]2.

-proc:{none, only} Control whether annotation processing and/or compilation is done.

-processor <class1>[,<class2>,<class3>...] Names of the annotation processors to
run; bypasses default discovery process.

-processorpath <path> Specify where to find annotation processors.
-d <directory> Specify where to place generated class files.

-s <directory> Specify where to place generated source files.

2Run javac -help to get this information.




18 CHAPTER 2. FUNDAMENTALS

In its essence an annotation processor is an implementation of the javax.annotation-
.processing.Processor-interface (see UML diagram in Figure 2.2). The Java compiler will
call the process-method of this interface while providing a processing environment. This
processing environment can be used to interact with the tool running the annotation
processor, usually the Java compiler. The interface javax.annotation.processing.Messager,
for instance, can be utilised by an annotation processor to report errors or informational
messages.

f# javax.annotation.processing |

<<interface>>
0 Processor

init()
process() @AbstractProcessor
getCompletions()
getSupportedAnnotationTypes( <]7
getSupportedOptions()

getSupportedSourceVersions()

0.* 1
. 1

<<interface>> L
ﬁ ProcessingEnvironment
getElementUtils() <<interface>>
getFiler() G Messager

etMessager -

getoptiorg()() printMessage()

getSourceVersion()
getTypeUtils()

Figure 2.2: The javax.annotation.processing-package which hosts the API for JSR 269-
based annotation processing.

In addition to the classes and interfaces above (Figure 2.2), the annotation process-
ing environment provides programmatically access to the structure of the class currently
processed. Therefore a Java model API is used to reflect the structure and type infor-
mation of Java classes. This API is split up into two parts, an element API and a type
API. The type API focuses on the different types like primitive types, array types, or
reference types, whereas the element API models the elements of the Java programming
language like classes, methods, variables and so on. Figure 2.3 shows an abridged view
of the element API as it can be found in the package javax.lang.model.element. Besides
the elements of the Java programming language, Figure 2.3 shows that an interface El-



2.1. ANNOTATING JAVA CODE 19

EE javax.lang.model.element

<<interface>>

0 Element <<interface>>
accentl) ¥ ElementVisitor
asType() ) visitExecutable()
getAnnotation() visitType()
getEnclosedElements() visitTypeParameter()
getEnclosingElement() visitVariable()
getKind() visitUnknown()
getModifiers()

getSimpleName()
D newOperation()

<<interface>>
{#VariableElement

getConstantValue()

<<interface>>
9 TypeElement
<<interface>> getinterfaces()
¥ ExecutableElement getQualifiedName()
getSuperclass()
getParameters() getTypeParameters()
getReturnType()
getThrownTypes()
getTypeParameters()
isVarArgs()

Figure 2.3: Abridged view of the package javax.lang.model.element.

ementVisitor exists. Utilising the visitor pattern is the proposed way to process models
and one may benefit from default implementations of this interface provided by Sun.

Integrated Annotation Processors

As mentioned above, the Java compiler is capable of running JSR 269 compliant anno-
tation processors. Besides, the integrated development environment Eclipse® and Net-
Beans? do run and integrate annotation processors [Net06, Har06, HGHO06]. Figure 2.4
shows a screenshot of the NetBeans IDE running an annotation processor and displaying
an error message created by that processor.

Other Annotation Processing Tools

In addition to the pluggable annotation processing API (JSR 269), developers and soft-
ware vendors are free to develop their own custom annotation processing tools. Since

Swww.eclipse.org
‘www.netbeans.org



20 CHAPTER 2. FUNDAMENTALS

27
35 [Main java:29: cannot find symbol: args |

E @SpecCase( post = "args != null")

3 T public statie weoid fee(Collection<?> arg){
31

32 }

ek}

Figure 2.4: Integration of an annotation processor in NetBeans.

annotations are present in source-code and, depending on their retention policy, byte-
code, ISVs can have a custom toolkit to process annotations.

2.2 Java Bytecode

Java is an platform independent programming language which means that source code
must be compiled only once and can be executed on nearly all computing platforms.
To achieve this, Java source code is not compiled into machine code, but into Java
bytecode which can be executed by a platform specific virtual machine. So to speak,
Java bytecode is machine code for the Java virtual machine (JVM). This section is about
Java bytecode, especially about bytecode creation and manipulation.

2.2.1 Classfile-Format

The Java virtual machine specification exactly defines the format for class files. At this
place, the basic concepts are outlined only, so that for an in-depth introduction [LY96]
should be consulted.

Although a single Java source file may define more than one class, at bytecode
level each class definition corresponds to one class-file, all ending with the class-suffix.
Basically, a class files consists of structural information, such as defined methods, fields,
annotations, its type hierarchy. and the actual opcodes, representing the code of a
method. The following explains the structure of class files, visualised in Figure 2.5 more
deeply:

Header The header identifies the file as an Java bytecode file, and informs about the
class file version.

Constant Pool The constant pool is a table storing constant values (e.g. String literals),
the name and descriptors of fields and methods, and names of other classes. Every
entry in the constant pool can be referenced by an index.

Access Rights Access rights are stored in a single bitmask containing information about
the visibility of a class and whether its abstract, static, or final. For instance the
modifiers public and final result in the bitmask 0x0011.

Class Hierarchy The information stored in the class hierarchy field denote a supertype
and all directly implemented interfaces. Java allows to have one supertype only,
but an arbitrary number of interfaces.



2.2. JAVA BYTECODE 21

Class-Datei

Header

Constant pool

>
|; Access rights

Class hierarchy

Fields

Methods

Attributes

Figure 2.5: Structural view of a class file.

Fields This part of a class files lists all defined fields, whereas a single field is defined by
its name, its type, access rights, and a number of attributes. An attribute can be
used to represent annotations or extended debug information.

Methods Similar to Field-information, the methods-part of a class files is a listing of
all defined methods. Methods consist of a descriptor, encoding the signature, its
name, access rights, and a set of attributes. The actual code of a method is stored
in an attribute and linked to the method.

Attributes Attributes in classfiles may contain all kinds of information. The virtual
machine specification defines a number of them but ISVs are free to add propriety
attributes to a classfiles. To give an example, pre-defined attributes are used to
store the actual code of a method, and to store annotations.

2.2.2 Creating Java Bytecode

In almost every case, Java Bytecode is created by a compiler, such as javac, which
is shipped with the Java platform, or by third party compilers, like the Eclipse JDT
compiler. They read Java source files and create class files, the file representation of
Java bytecode. A Java compiler might be invoked manually or automatically by an
IDE, but usually three distinct steps can be identified. First, Java source code is written.
Secondly, the source code is compiled into bytecode and, third, bytecode is executed by
the Java virtual machine. To ease the integration of the Java compiler into an IDE, the
Java Compiler API was introduced. It enables one to programmatically interact with
the Java compiler. The Compiler API evolved from JSR 199 and is part of the standard
Java platform since version 6 [GvdA02].



22 CHAPTER 2. FUNDAMENTALS

The Java Compiler API

The Java Compiler API can be used to start and control the Java compiler at runtime
and, thus, dynamically create bytecode bytecode from source code. Moreover, the Java
compiler API does not depend on a file-based representation of source files or bytecode
files, but can process arbitrary streams of bytes. For instance, a program can dynamically
create source code which is compiled and loaded into the Java virtual machine (JVM). In
its essence, the Java Compiler API can be controlled with the following four interfaces:

javax.tools.JavaFileObject A JavaFileObject is an abstraction of Java files regardless being
a source file (*.java) or a binary file (*.class). For instance, utilising this interface
allows to create source files in memory, retrieve them through a network connection,
or read them from the hard disc.

javax.tools.JavaFileManager During compilation, the JavaFileManager is used to manage
JavaFileObjects. E.g. it may reuse source from a cache or load it from a network
resource.

javax.tools.JavaCompiler.CompilationTask A compilation task consists of a set of JavaFile-
Objects which are to compile. The CompilationTask can issue warnings and errors
that occurred during compilation.

javax.tools.JavaCompiler The interface to the Java Compiler which does the actual source
code to bytecode transformation. The JavaCompiler is used to create a Compilation-
Task from a set of compilation units. The Java standard platform is delivered with
an implementation of this interface but ISVs are free to provide their own imple-
mentation of the JavaCompiler interface. The Eclipse JDT project, for instance,
provides a Java compiler which can be accessed via the JavaCompiler interface as
well [Art06].

2.2.3 Manipulating Java Bytecode

Normally, bytecode is created through compilation of source code and remains unchanged
unless further compilation is performed. However, bytecode can be created or changed
manually without a compiler. This, so called bytecode manipulation or instrumentation,
can be used for profiling, debugging, or to add new features to a program. Bytecode can
be manipulated either statically by changing classfiles, or dynamically, when a class is
loaded into the Java virtual machine. The following outlines one static and two dynamic
approaches for bytecode instrumentation.

Static Bytecode Instrumentation

Static bytecode instrumentation is performed prior to runtime and changes the content
of classes in the file system. Although it is an additional step it might appropriate when
byte instrumentation is required only once, e.g. for bytecode obfuscation or encryption.



2.2. JAVA BYTECODE 23

Custom Classloader

In Java, a classloader is used to locate and load the content of a class file into the
virtual machine. Third party developers are free to implement custom classloaders and,
thus, adding new class loading capabilities to the Java platform. For instance, such
are loading classes from an encrypted file, via a network connection, or performing
bytecode manipulation. Such an on-the-fly bytecode manipulation is useful whenever
the instrumentation must be computed dynamically or when class files could not be
manipulated statically (e.g. class-files are write protected). However, dynamic bytecode
instrumentation always imposes runtime penalties as it slows down class loading.

Prior to Java 5 dynamic bytecode instrumenting could only be achieved by a wrap-
per program. Such a program will be a stand-in for the actual program, forwarding all
program parameters, but installing a custom classloader that performs bytecode instru-
mentation. The Java instrumentation API, introduced in Java 5, makes such stand-in
programs dispensable because now the JVM supports bytecode instrumentation natively.

The Java Instrumentation API

The instrumentation API is part of the Java standard platform and embraces dynamic
bytecode instrumentation. It consists of a set of interfaces, a new parameter for the
program java, and a new attribute for manifest-files in jar-archives.

In terms of the instrumentation API, a Java agent is a program which is loaded prior
to the main-method of a program and has the ability to instrument all classes getting
loaded for that particular program. A Java agent must define a premain-method, see
Listing 2.12, which is called prior to the main-method [Sune].

public static void premain(String agentArgs, Instrumentation inst);

Listing 2.12: Method signature of a premain-method.

The passed java.lang.instrumentation.Instrumentation-instance is used register bytecode-trans-
formers and, hence, the entry point for bytecode instrumentation.

To enable instrumentation at runtime, the program java needs to be called with the
parameter javaagent followed by the name of an archive. That archive must contain a
class with the premain-method, and point to that class via an entry in its manifest file.
Listing 2.13 shows such a command.

/>java —javaagent:instrument.jar foo.bar.HelloWorld

Listing 2.13: The command used to enable dynamic bytecode instrumentation.




24

CHAPTER 2. FUNDAMENTALS



Chapter

Design by Contract in Java

Except for the simple assertion facility, Java does not support design by contract (DBC),
and it is left to third party developers to implement DBC for Java. This chapter is
about DBC in general, and about existent DBC implementations for Java. In Section
3.1 the basic ideas of DBC and frequently used terms are recapitulated, whereas in
Section 3.2 tools and approaches, that have been used to implement DBC, are introduced.
Section 3.3 gives an overview and review of these approaches, and clarifies some common
concepts.

3.1 Design by Contract

With DBC Bertand Meyer developed a programming methodology to increase the reli-
ability of software systems. Meyer defines reliability as the combination of correctness
and robustness or, put in other words, the absence of bugs [Mey92]. In the style of the
business world, design by contract uses the terms client and supplier. Usually, when
a client and a supplier have a contract, obligations must be fulfilled and some benefit
is expected. The same is true for design by contract and programming. For instance,
calling a method involves two parties: a caller (client) and a method (supplier). Be-
sides handing down words from the business world to programming, design by contract
focuses on the contract which states:

e what conditions a caller must fulfil in order to be allowed to call a certain method,
and

e what conditions a method guarantees, assuming the caller stuck to his part of the
contract, once its execution is done.

In other words, a caller must fulfil certain pre-conditions to call a method and, in return,
the method fulfils certain post-conditions. The concept of pre- and post-conditions dates
back to the work of C.A.R Hoare and the Hoare triple [Hoa69]. A Hoare triple is defined

25



26 CHAPTER 3. DESIGN BY CONTRACT IN JAVA

| {P} C{Q} (3.1)

where P and @) are logical formulae and C' is a program or command. The reading of
the Hoare triple is that whenever P holds true in the state before starting the program
C, C will stop in a state where @) holds. Actually, P is called pre-condition and @Q is
called post-condition. Loosely speaking, DBC is the pragmatic application of the Hoare
triple.

The following terms are frequently used when talking about design by contract:

Pre- & Post-Conditions A pre-condition is an assertion which must hold true before a
method is executed but after the method execution has been initialised, meaning,
local variables are loaded already. In return, a post-condition is an assertion which
must hold true after the execution of a method has terminated but the before the
program counter jumps back to the calling method.

Class-Invariants As pre- and post-condition are specified for a particular method only,
class-invariants are valid for a whole class and, thus, for each method of that class.
Class-invariants are checked whenever pre- or post-conditions are checked.

Pre-State The pre-state is the state of an object in which a pre-condition is checked.
The Old-construct is used to capture the pre-state values of an object so that it
can be used in the post-state.

Post-State The post-state is the state of an object in which a post-condition is checked.
In the post-state, the pre-state values can be accessed via Old, and method return
values, if existent, can be accessed.

Inheritance Pre- and post-conditions and class-invariants are inherited in terms of object-
oriented programming. How inheritance works, depends on the DBC implementa-
tion one uses. In Section 3.2 different realisation are introduced.

Note that design by contract is not to be mistaken with defensive programming which
aims for the direct opposite. Instead of specifying the behaviour of program and moni-
toring this specification for violation, defensive programming points out that a program
should handle all possible kinds of input gracefully, thus, increasing complexity.

3.2 Existing DBC Tools & Specification Languages

This section introduces a wide range of DBC-implementations for Java. Starting with
the simple assertion facility natively supported by Java (3.2.1), some elaborated tools
like Jass (3.2.2), the Common JML Tools (3.2.3), jContractor (3.2.4), and Contract4J
(3.2.5) are presented. Further, two rather technical concepts of how to implement DBC
in Java are presented in 3.2.6 and 3.2.7.



3.2. EXISTING DBC TOOLS & SPECIFICATION LANGUAGES 27

3.2.1 Build-in Assertion Facility

Evolved from JSR 41 [Blo99], Java 1.4 and higher includes a simple keyword-based
assertion facility. An assertion is defined as a boolean expression which is ought to
be true at a certain state. In Java, assertions are expressed using the assert-keyword
[GJSBO5]. An assertion violation will raise an java.lang.AssertionError, a ’fail-hard’ policy,
which makes it a simple but powerful construct to improve code quality. Listing 3.1
shows how the assert-statement is used in Java code.

public void clear(){

assert isEmpty() : "Buffer not empty after 'clear'”

}

Listing 3.1: Using the assert-keyword.

The assert-keyword is followed by a boolean expression and an optional object which will
be treated as error message.

Technial realisation

To not impose runtime penalties, Java assertions are disabled by default. To enable
assertions at runtime, one has to use the switches of the java-program, outlined below.

-ea [: (packagename)*| : (classname)*] Without any parameters, the -ea switch enables as-
sertions for all classes which make use of the assert-statement. Optionally, a colon-
separated list of class or package names might be specified, which is treated as a
filter and enables assertions for these classes only. The ea switch is an alias for
enableassertions which can be used in the same manner.

-da [: (packagename)*| : (classname)*] Disable all assertions or only those specified via the
package and class-name filters. The switch disableassertions can be used synonymi-
cal.

-esa Enables assertions for all system classes, the same as enablesystemassertions. A
package or class name based filter does not exist.

-dsa Analogue to esa, this switch disables all system class assertions. Shorthand for
disablesystemassertions.

Technically speaking, assertions are very simple as the compiler transforms the assert-
statement into an if-statement. Thereby, the boolean expression gets negated so that
an error will be raised if the boolean expression does not hold. The enablement of
assertions is realised with a seconded enclosing if-statement which checks for a boolean
field. This boolean field is generated by the compiler and named S$assertionsEnabled. It
will be initialised by the system classloader depending on the switches introduced above.
At bytecode level, Listing 3.1 is equivalent with Listing 3.2.




28 CHAPTER 3. DESIGN BY CONTRACT IN JAVA

public void clear(){

if ($assertionsEnabled){
if (lisEmpty()){
throw new AssertionError (" Buffer not empty after 'clear'");
}
}
}

Listing 3.2: The ‘decompiled’ assert-statement.

3.2.2 Jass - Java with Assertions

As part of his master’s thesis, Detlef Bartezko developed Jass which founds on former
work of Clemens Fischer and the JaWa (Java with Assertions) project [Bar99]'. Jass
uses a comment-based syntax and a pre-compiler to implement design by contract. The
following outlines the Jass feature-set, yet, a comprehensive introduction to Jass can be
found on its project website [Jas05].

Class-Invariant

Jass allows the definition of class-invariants with the restriction that they have to be
defined at the end of the class. They are checked in every visible state of the class
where visible states are defined as all method entry and exit points, and the end of
constructors. The invariant statement, as shown in Listing 3.3, consists of the invariant-
keyword followed by a boolean expression. The boolean expression may extend the
standard Java boolean expression by quantifiers which will be introduced later in this
section.

public class Buffer implements java.lang.Cloneable {

/** invariant fBufferSize >= 0 xx/

}

Listing 3.3: Invariant in Jass.

Method Specifications

In Jass, pre- and post-conditions can be used to annotate methods and constructors. A
pre-condition (see Listing 3.4) is written as multiline comment starting with the require-
keyword and followed by a boolean expression. Similar to invariants, these boolean
expressions might be extended with quantifiers. Pre-conditions must be the first line in
a method body.

!Note, this section refers to Jass version 2.x and not to Jass version 3.x, which uses the Java Modelling
Language (JML) as input language.




3.2. EXISTING DBC TOOLS & SPECIFICATION LANGUAGES 29

public void add(Object obj){
/*x require obj != null; lisFull () *x/

Listing 3.4: Pre-condition in Jass.

Analogue to pre-conditions, post-conditons are multiline comments and have to be
the very last statement of a method body. They start with the ensure-keyword followed
by a boolean expression. As one can see in Listing 3.5, the special variables Return and
Old can be used in Jass. As the sound of their names indicate, Return refers to the return
value of the current method whilst Old refers to the state of the this-reference in the
pre-state. The latter one, Old, imposes that Jass is able to create a copy which is to be
achieved by implementing java.lang.Cloneable. Note, that in Section 3.3.3 the semantics
of Old is discussed.

public Object removelast(){

/** ensure Return != null; OIld.fBufferSize = fBufferSize — 1 xx/
¥

Listing 3.5: Post-condition in Jass.

Loop-(In)Variants

In addition to class-invariants and pre-/post-conditions, the Jass feature-set contains
loop-variants and loop-invariants. A loop-invariant is a property which may not change
as the loop executes, whereas a loop variant has to decrease in every loop iteration.
Listing 3.6 shows how they are used in Jass.

for(int i=0; i < 100; i++){
/*% invariant B xx/
/%% variant D xx/

Listing 3.6: Loop-variant and loop-invariant in Jass.

Quantifiers

Quantifiers in Jass allow one to check a condition for a whole range of elements. Listing
3.7 shows an invariant which ensures that no element in a buffer is the null-reference.

/*% invariant forall i : {0..fBufferSize} # get(i) != null xx/

Listing 3.7: The forall-quantifier in Jass.




30 CHAPTER 3. DESIGN BY CONTRACT IN JAVA

The exists-quantifier is similar to the forall-quantifier. It ensures that a condition is
satisfied at least once for a number of elements.

Retry and Rescue

The retry and rescue construct can be used to handle contract violations programmat-
ically and to react upon them. Listing 3.8, for example, shows how a retry and rescue
strategy is implemented in the case the null-element is added to a buffer.

public void add(Object obj){
/x% require [obj_null] obj != null; lisFull() *x/

// ..code goes here...
/x% rescue catch (PreconditionException e) {
if (e.label.equals(”"obj_null™)) {
o = new DefaultObject ();

retry;
}
else throw e;
}
}
Listing 3.8: The retry and rescue construct in Jass.
Check

The check-statement works just as the standard Java assert-statement (see Section 3.2.1).
It can be placed anywhere in method bodies where a condition is ought to be true.

Inheritance

In Jass, contracts from a supertype are not inherited by a subtype. Further, contracts
cannot be specified for abstract methods, either in interfaces or abstract classes, since
they do not have a method body and, hence, inheritance for these types is not possible.

However, Jass supports a mechanism called refinement which makes it supertype
aware and, thus, aware of contracts in supertypes. By default, refinement is disabled,
but when a subtype implements the marker interface jass.runtime.Refinement, contracts
of the supertype are checked as well, in particular, it is ensured that a subtype may
weaken pre-conditions but strengthens post-conditions (see 3.1, page 25). In the case
of a pre-condition, Jass evaluates the expression presupertype N “Presubtype- If the result
is true, a subtype does not fulfil a pre-condition the supertype fulfils and a refinement
error occurs. While this check is done automatically, a subtype must provide an instance
of the supertype for these checks. Therefore, a method jassGetSuperState, that returns
an instance of the supertype, must be implemented. Although the subtype itself is an
instance of its supertype, it might not be a sufficient super state, because the subtype
cannot access private members of the supertype and might even hide those members
[Bar99, Jas05].




3.2. EXISTING DBC TOOLS & SPECIFICATION LANGUAGES 31

3.2.3 JML - Java Modelling Language & Common JML Tools

The Java Modelling Language (JML) is a behavioural interface specification language
which has been developed by Gary T. Leavens, who is a Professor of Computer Science at
the Towa State University. JML and the Common JML Tools bring DBC to Java. Note,
that JML is a specification language only, and that the Common JML Tools implement
a JML parser and compiler, thus, enabling specification-checks at runtime. Aside from
the Common JML Tools, there are some other tools using JML as their input language
[BCCT05]. Yet, in this thesis, JML and the Common JML Tools are examined only.

The following shows a small selection of the JML feature-set, mainly chosen because
other tools have similar features or because they are of importance for this thesis. A
comprehensive guide to JML is the JML Reference Manual [CCCT06].

Class-Invariants

JML knows of class-invariants and a related construct called history constraints. Both
define properties which hold true in all visible states of a program execution. The
definition of visible states is made up from the following statements [CCCT06]. Have an
object o, so all visible states are:

e the end of any constructor initialising o,
e the beginning of the finaliser which removes o from the memory,
e the beginning or the end of all methods defined in o or inherited to o.

An exception from these rules are all methods (including constructors) which are marked
as helper using a helper-annotation.

Class-invariants and history constraints can be differentiated by looking at the prop-
erties they define. A class-invarinat may define a boolean expression which is ought to
be true in all visible states. In contrast, a history constraint targets post-states only
but can access values from the pre-state. The example in Listing 3.9 shows an invariant,
that asserts that a buffer is never less than zero, and a history-constraint, that uses the
old-construct to ensure that the size of a buffer grows monotone. Further, the method
skipMe is marked as helper which excludes it from invariant checks.

public class Buffer {

//@ invariant fBufferSize >= 0;
private int fBufferSize;

//@ constraint data.length >= \old(data.length)
private Object[] data;

public /+ helper x/ void skipMe(){ ... }

public void checkMe(){ ... }




32 CHAPTER 3. DESIGN BY CONTRACT IN JAVA

Listing 3.9: Invariants and history constrains in JML.

Additionally, a visibility modifier may be added to invariants and history constraints.
The visibility modifiers have the same semantics as those known from Java, and inheri-
tance of contracts is controlled with them.

Method Specifications

In JML the specification of a method consists of a number of specification cases, each
being a behavioural specification. Essentially, each method specification consists of:

e A visibility modifier expressing that a method specification is public, protected, pack-
age_private, or private. The semantics of these modifiers equal those known from
Java.

e A pre-condition and two different types of post-conditions, namely, normal and
exceptional post-conditions.

e An assignable clause which is used to denote members which value can be modified
safely in the course of the method execution.

e Further, aspects like concurrency, timing-issues, and redundancy are optionally
addressed by JMLs method specifications. See chapter 9.9 in [CCC™06] for further
information.

An example of a method specification, which defines normal and exceptional behaviour,
is given is Listing 3.10. An exceptional post-condition is evaluated if the execution of a
method is terminated due to an exception.

/%@ public normal_behaviour

© requires obj != null && lisFull ();
Q ensures size()—1 == \old(size()) && contains(obj);
@ also
© public exceptional_behaviour
@ requires obj = null;
(G signales (NullPointerException) \old(size()) = size ();
@ x/
public void add(Object obj){ ... }

Listing 3.10: A method specification in JML.

In Listing 3.10 both specification cases have the visibility modifier public. Note that there
are two rules restricting the use of visibility modifiers in JML specifications.

e The visibility modifier cannot permit more access, than the method being specified
does. Thus, a public method may have a private specification but it is not allowed
to have a public specification with a private method.




3.2. EXISTING DBC TOOLS & SPECIFICATION LANGUAGES 33

e The visibility of a specification must also be validated against the elements refer-
enced by that specification. For instance a public specification may not refer to a
private member. Otherwise a specification is accessible from other classes (especially
with inheritance) but the elements used in the specification are not.

Inheritance

In JML, specifications of supertypes are inherited to its subtypes no matter if the super-
type is an interface or class type. The only restriction one has to obey is that method
specifications that inherit specification cases from supertypes must start with the also-
clause. Further, visibility of the supertype specifications matters, e.g. a private specifi-
cation case will not be inherited to a subtype. In other words, the visibility-attribute of
a JML specification has the same semantics as the visibility-modifier in Java.

public interface IBuffer {

/* @ public normal_behaviour
© requires obj != null;

Q@ x/
public void add(Object obj);
}

public class BufferImpl implements [Buffer {
private int size;

/* @ also
@ private normal_behaviour
o ensures \old(size)+1l = size;
Q@ x/
public void add(Object obj){ ... }
}

Listing 3.11: Inheritance and refinement of specifications in JML.

In Listing 3.11, a concrete class and the interface it implements is shown. The class
inherits a specification case for the method add and extends the specification with a
second specification case. Note that a third class, extending Bufferlmpl, will not inherit
the second specification because it is private. In such a case, only the specification of
the interface, which is public, will be inherited.

Model Variables

JML does not allow that a specification refers to elements with a visibility that is more
restrictive than its own visibility. For instance, the pre-condition in Listing 3.12, is not
a valid JML specification because the public post-condition refers to a private member.

public class Buffer {




SO W N

34 CHAPTER 3. DESIGN BY CONTRACT IN JAVA

private int size = 0;

/% @ public normal_behaviour
Q ensures \old(size)+1l = size;
Q@ x/

public void add(Object obj){
size += 1;

}
}

Listing 3.12: Invalid post-condition — a public specification may not refer to a private
member.

This restriction enforces a clean decoupling of implementation details and specification.
In order to fix the specification in Listing 3.12, the following approaches exist.

e The visibility modifiers of the members referenced by a specification get adjusted.
So, the field size in Listing 3.12 would be made public. However, making such a
helper variable public enables foreign changes which can easily break the specifica-
tion. Further, in the case of interfaces, Java does not allow to define non-constant
fields and, thus, helper variables cannot be used.

e In JML specification-only visibility modifiers as spec_public exist. In the example
above private and spec_public can be used in combination so that the field is protected
for foreign access but can be used in specifications. However, for interfaces, this
approach is not very valuable, because fields in interfaces must be constant.

e A third approach is to use auxiliary methods, e.g. getSize() (see Listing 3.12). Such
a helper method must guarantee to be side-effect-free. Still, using helper methods
only, may not be enough to thoroughly specify method behaviour.

To address these problems, JML defines model variables and model methods [CLSEOQ5].
In the course of this thesis model variables are of interest only, so the they are put in
focus. Still, model methods are analogue to model variables. Basically, a model variable
is a specification-only variable which can be used with specifications exclusively. On
top of solving above problems, model variables can be used to avoid under-specification.
What under-specification means and how model variables may solve that problem is
shown once the syntax of model variables have been introduced.

A model variable is declared using standard Java field declarations plus the model-
keyword [GJSB05, CLSEO05] . Listing 3.13 shows a model variable declaration and how

the model variable is referenced by an invariant.

public interface I[Buffer {
/%@ public model Object[] data; x*/

/*@ invariant data.length >= 0 x/




7
8

0 O Ok W N

3.2. EXISTING DBC TOOLS & SPECIFICATION LANGUAGES 35

public int getSize();

}

Listing 3.13: A model variable defined in JML.

In the next step a value representation is linked to the model variable. This is done with
the represents-clause as shown in Listing 3.14. It shows a class implementing the IBuffer-
interface and, thus, inheriting the model variable data. The model variable representation
in line 5 shows that the model variable data is represented by the function fStorage.toArray.
In particular, a model variables is not getting assigned with a value but relates to a model
variable representation which evaluates to a value.

public class Buffer implements IBuffer {
private Collection fStorage;

/*@ represents data <— fStorage.toArray(); x*/

Listing 3.14: Assigning a value to a model variable.

More about the syntax of represents-clauses and model variables/methods can be found
in [CCCT06], chapter 7 and 8.4.

Above section has already mentioned the problem of under-specification and that
model variables might be a solution. For instance, using the model variable data (see
Listing 3.13) makes it easy to define a post-condition for the getSize-method, Listing
3.15.

/*@ ensures \result =— data.length x/
public int getSize ();

Listing 3.15: A post-condition using the model variable.

Without the knowledge about a specification-only representation of the data storage,
such a specification could have not been expressed.

3.2.4 jContractor

The jContractor tool ushers design by contract in Java by a principle based on the
separation of code and contracts, the adherence to naming conventions, and bytecode
manipulation. The jContractor project was initially launched by Murat Karaorman, Urs
Holzle, and John Bruno in 1998 [KHB98]. These days the project is in the ownership of
students of the University of California, Santa Barbara.

The essence of jContractor is to implement contracts as methods returning a boolean
and, thus, expressing if a contract holds or not. The binding between contracts and code
is based on naming patterns. The jContrator feature set includes class invariants, pre-,
and post-conditions.




36 CHAPTER 3. DESIGN BY CONTRACT IN JAVA

Class-invariants

JContractor relies on contract-methods and a naming-patterns. In the case of class-
invariants, the name of such a contract-method needs to be _Invariant. As a consequence
of this and due to the fixed method-signature, all invariants need to be defined in this
single contract-method (see Listing 3.16).

protected boolean _Invariant(){
return invariant_1 && invariant_2 && ... && invariant_N;

Listing 3.16: A method implementing an invariant.

Method assertions

The name of a method implementing a pre- or post-condition can be derived by adhering
to the rules defined in table 3.1. Just as for invariants, all pre-conditions and post-
conditions for a method need to implemented in a single method. In Listing 3.17 for

Method | Method-signature
Target | <modifier> returnType name(parameters)

Pre-Condition | protected boolean name_Precondition(parameters)

Post-Condition | protected boolean name_Postcondition(parameters,
returnType RESULT)
Exception-Handler | protected returnType name_OnException(parameters,

Exception; e) throws Exception;

Table 3.1: Signatures for contract-methods in jContractor.

instance, a method is shown which implements a post-condition ensuring that the return
value is not the null reference.

protected boolean get_Postcondition(int i, Object RESULT){
return RESULT != null;
}

/xx Target for the post—condition. x/
public void get(int i){

return data[i];
}

Listing 3.17: A method explicitly implementing a post-condition.

Notes

The declaration of contract methods and ordinary methods must not be separated into
different classes. Nevertheless, it is recommended to comply with a clean separation of
contracts and code, additionally, contracts for interfaces cannot be specified differently.




3.2. EXISTING DBC TOOLS & SPECIFICATION LANGUAGES 37

There is a tool called C4J (Contract for Java) which implements design by contract
in a similar fashion, namely by implementing contracts as methods and defined a special
naming-scheme. An interesting facet of C4J is that, in addition to the naming patterns,
binding relies on a Java 5 annotation [Ber06]. However, as there is less literature and
information about C4J, jContractor has been chosen for this work.

3.2.5 Contract4)

Contract4J enables design by contract in Java with assertions written as Java 5 anno-
tations. Assertions are evaluated using aspect oriented programming techniques and a
dynamic Java evaluation engine [Wam0O6a, WamO06b|. This approaches contrasts with
the previously introduced tools as assertions are not validated or compiled but inter-
preted at runtime. Contract4J is featured by the aspect research associates and can
be spilt up into Contract4J5 and Contract4J-Beans [Asp06]. Since the latter one is
merely a prototype and not covered in this work, the terms Contract4J5 and Contract4J
are used likewise. Contract4J offers three annotation types: pre-, post-conditions, and
class-invariants.

Class-invariant

A class-invariant is expressed using the @Invar-annotation which defines two elements.
Both elements are Strings and they are used to set a boolean expression and a message.
The boolean expression has to evaluate to a boolean value, whereas the latter one is a
custom message in case this invariant is violated. The @Invar-annotation can be placed
at almost any available annotation-target, so that invariants can be placed at type-
definitions, constructors, methods, fields, and annotation-types. However, due to the
annotation design (see 2.1.2), every target can be annotated only once with the @lnvar-
annotation. An example of class-invariants in Contract4J is given in Listing 3.18.

@lnvar (" fBackupBuffer I= null”)
public class Buffer {

private Object[] fBackupBuffer = new Object[]{};

Q@Invar(value="fBufferSize >= 0", message="Illegal buffer—size.")
private int fBufferSize = 0;

}

Listing 3.18: Invariant in Contract4J.

Method Specifications

The @Pre-annotation implements the pre-condition feature in Contract4J and can be
applied to constructors and methods. Its default value is a string which is meant to be




38 CHAPTER 3. DESIGN BY CONTRACT IN JAVA

Java code evaluating to a boolean. The example code in Listing 3.19 shows the pre-
condition which uses the special keyword $this. It is equivalent to the Java this-keyword
but must be used because of the evaluation engine which is not capable of handling this.

@Pre(”item != null && $this.isFull() = false")
public void add(Object item) { ... }

Listing 3.19: Pre-condition in Contract4J.

The post-condition feature resembles the pre-condition except for the additional $re-
sult-keyword and the $old()-function. The latter one is used to access the state of the
passed type whilst $result references the return value. The post-condition and both
constructs are shown in Listing 3.20.

QPost(” $result != null && $old(fBufferSize) — 1 = fBufferSize")
public Object removelast(){ ... }

Listing 3.20: Post-condition in Contract4J.

Inheritance

Contract4J has limited support for inheritance of specification from annotated super-
types to subtypes [Asp06]. In particular, Contract4J has to cope with the fact that
Java 5 annotations, and thereby its specifications, are not inherited (see 2.1.2, page
14). The exception from this restriction, class-type annotations and the Inherited-meta-
annotation, make Contract4J inherit the invariant which possibly has been placed at the
type definition.

Apart from this difficulties, inheritance in Contract4J bases on the Liskov Substitu-
tion Principle (LSP) which states that a subtype has to be substitutable for his parent
type without breaking the program. Put in other words, if a certain property holds true
for a type T than it holds true for a type S which is a subtype of T [LW93]. As a con-
sequence, Contract4J must obey the contracts of a parent type when subtypes exist. In
the case of pre-conditions, this means that an overwriting method may weaken the pre-
condition so that in any case the overwritten pre-condition is satisfied by the subtype’s
pre-condition. In opposition, post-conditions may be strengthened as the overwritting
method can narrow down the set of possible results. Back to Contract4J, inheritance is
implemented with the following rules and restrictions:

e The only invariant that possibly gets inherited is the one placed at the type-
definition. However, it is meant to be immutable so that new invariants in subtypes
can be placed at fields, constructors, and methods only.

e For methods, inheritance must be enabled manually by adding the annotations @Pre
and @Post to the overwriting method. However, if an overwriting method wants
to refine the specification it inherits, it is obligated to repeat the inherited con-
tract and to connect it with the logical and (post-condition), or or (pre-condition)




0~ O U W N

e e e el el el
N OOtk W= OO

3.2. EXISTING DBC TOOLS & SPECIFICATION LANGUAGES 39

respectively. This restriction makes refinement and inheritance of specifications an-
tagonists and one might say that Contract4J supports inheritance of specifications
only if they are not getting refined.

Listing 3.21 shows how inheritance in Contract4J works and how refining specifications
thwarts inheritance.

public interface IBuffer {

@Pre(” obj != null")
public void add(Object obj);

}

public class EndlessBuffer implements IBuffer {
@Pre
public void add(Object obj){ ... }

}

public class RestrictedBuffer implements [Buffer {
@Pre(” !'this.isFull() || obj != null™)
public void add(Object obj){ ... }

}

Listing 3.21: Inheritance and refinement in Contract4J.

The pre-condition defined in line 3 is inherited to both implementation of the interface
IBuffer. Since the EndlessBuffer does not refine it, adding the empty @Pre-annotation is
sufficient for contract inheritance (line 9). In contrast, the RestrictedBuffer refines the
pre-condition and, thus, needs to re-type the parent specification. Line 15 shows the
refined pre-condition.

Notes

Contract4J uses Java 5 annotations to specify Java expressions, each representing a
boolean value, which will be evaluated at runtime. Evaluation happens dynamically at
runtime and, thus, compilation is not required. However, the dynamic contract eval-
uation brings two drawbacks. First, specification errors, misspelled variable names for
instance, are detected at runtime only and, secondly, the evaluation engine used in Con-
tract4J does not offer full Java syntax support.

3.2.6 Using Aspect-Oriented Programming

This section does not introduce a concrete nor existent design by contract implementa-
tion but sketches up how a DBC-tool for Java could look like if implemented with aspect-
oriented programming techniques. The basic ideas of this approach are borrowed form
Filippo Diotalev who has shown how design by contract and aspect-oriented program-
ming for Java could be paired up [Dio04]. Before going into more detail, aspect-oriented
programming will be introduced briefly.




=W N~

40 CHAPTER 3. DESIGN BY CONTRACT IN JAVA

Aspect-oriented programming

Aspect-oriented programming (AOP) was introduced in the late 90s by a group of
researchers at the Xero Palo Alto Research Center [KLM™97]. It is a programming
paradigm which emphases the separation of cross-cutting concerns. Cross-cutting con-
cerns are a specialisation of the basic idea of separation of concerns which is used to aid
programmers to define well modularised programs. In procedural and object-oriented
programming the separation of concerns works well for structural properties as they
have entities like packages, classes, and methods. However, some concerns like logging
or security management cannot be encapsulated in separate entities and they cut across
every module in a program. For instance, in a business application almost every critical
method will start and end with a logging statement.

The goal of AOP is to capture such cross-cutting concerns so that they can be
encapsulated into separate entities. Such entities are usually called aspects. Along with
aspects the following terms are used in the scope of aspect-oriented programming:

Aspect An aspect is an encapsulation of cross-cutting concerns in programming. An
example is logging which cuts across all modules, classes, and methods of a pro-
gram.

Advise Advises are provided by aspects and define additional behaviour at certain
points in a program. Realtions like before, after, or around express when the advise
is executed relative to these points. Sticking to the logging example, an advise
would be to log a message before a certain point in a program is reached.

Join Point A join point is a point in a program where an advise can possibly be applied,
in other words, where the advise can join the program. Examples of join points
are methods and constructors.

Pointcut The role of a pointcut is to select a set of join points for a certain advise in
an aspect. For logging, a pointcut could select a method based on its name and
defining type.

Note that these term definitions base on the AspectJ project and might differ sligthy
in other projects?. However, AspectJ which emerged from the original project at the
Palo Alto Research Center is the most prominent aspect-oriented programming language
for Java and can be counted as a reference for AOP [The06]. An example of AspectJ is
given in Listing 3.22 wrapping up the previously introduced logging example. The goal
is to log all method calls where the method is declared as private.

aspect LoggingPrivates {

pointcut callPrivate() : call(private « T.x(..));

2For instance naming can be different in other projects. This is similar to procedural programming
and the notion of methods, functions, or procedures.



o N O Ot

0~ O Tk Wi

3.2. EXISTING DBC TOOLS & SPECIFICATION LANGUAGES 41

before (): callPrivate() {
System.err.println(”"about to call a private method”);
}

Listing 3.22: An unsophisticated logging aspect written in AspectJ.

In line 1 the aspect LoggingPrivates is defined which encapsulates a pointcut and an
advise. The pointcut-definition in line 3 consists of the pointcut’s name callPrivate() and
its capture; all calls of private methods in type T regardless their return type, name,
and parameters. The before-advice (line 5 to 7) will be executed prior to all method
executions, which are matched by the callPrivate() join point, and simply prints a message
to the standard error stream.

An obvious application of aspect-oriented programming is design by contract and con-
tract enforcement. Since contracts are all over the code they are clearly cross-cutting
and can be implemented with AOP. The next section will show how a design by contract
implementing aspect could look like.

An aspect for method assertions and class invariants

This section shows how method assertions and class-invariants might be implemented
with aspect-oriented programming. The example at this place was kept deliberately
simple and was modelled after a more sophisticated version from [Dio04].

The code in Listing 3.23 shows an aspect which models pre-, post-conditions, and
class-invarinats for a method Buffer.add(Object). The invariant ensures that the size of
the buffer is always larger than or equal to zero (line 11 & 25), whereas pre- and post-
condition ensure that the element to add is not the null-reference nor that the buffer is
full already (line 14) and, finally, that the element actually resides in the buffer (line 21).
The invariant, pre-, and post-condition are encapsulated in an around-advise which can
be applied to all join points captured by the pointcut contractTarget(). That pointcut is
defined in line 3 and will select the method add(Object):void of the type Buffer regardless
its visibility.

aspect BufferAddAspect {
pointcut contractTarget() : call(void Buffer.add(Object));
around () : contractTarget() {
// (1) capture target object and join point arguments
Object obj = thisJoinPoint.getTarget();
Object[] params = thisJoinPoint.getArgs();

// (2) check invariant
assert ((Buffer)obj).fSize >= 0;

// (3) check pre—condition




14
15
16
17
18
19
20
21
22
23
24
25
26
27

42 CHAPTER 3. DESIGN BY CONTRACT IN JAVA

assert param[0] = null || !((Buffer)obj).isFull()
"Pre—condition violated — cannot add null.”;

// (4) proceed with method execution
proceed ();

// (5) check post—condition and invariants
assert !((Buffer)obj).contains(param|[0])
"Post—condition violated — Adding element failed.”;

// (6) check invariant
assert ((Buffer)obj).fSize >= 0;

Listing 3.23: Method assertions and class-invariant for a buffer.

Applying the aspect as it can be seen in Listing 3.23 to a Java program will enforce
the defined contracts for the type Buffer. Even though topics like inheritance, the no-
tion of pure, or exceptional behaviour are not covered in this example, aspect-oriented
programming has proven to be a candidate for implementing design by contract.

3.2.7 Using the Proxy-Pattern

Similar to the section above, a further approach to implement design by contract for
Java will be outlined. It is based on an article and a prototypic implementation by
Anders Eliasson [Eli02] who proposes a pre-processor based implementation which uses
the proxy-pattern. In object oriented programming, the proxy-pattern defines a proxy-
object which appears as a surrogate of the actual object. This gives the proxy-object
the chance to perform additional operations every time the actual object is accessed e.g.
checking a pre-condition before calling a method. Figure 3.1 visualises the proxy pattern
and how it can be used to implement design by contract as an UML sequence diagram.

Technically, the proxy pattern approach proposes to create a Contract-proxy for
every object in the virtual machine or for those that have contracts. Since a proxy-
object stands-in for the actual object and implements its contracts, contract enforcement
is guaranteed.

Class-invariants & method assertions

The previous section embraced the technical part of [Eli02] only and did not define
how contracts are specified. In this DBC-implementation, class-invariants and method
assertions are ought to be defined via custom javadoc-tags. Those are @pre, @post, and
Qinvariant, presented in Listing 3.24, which need to be processed by a doclet generating
appropriate code.

interface Buffer {

/%%

% Q@invariant size > 0

*/




3.2. EXISTING DBC TOOLS & SPECIFICATION LANGUAGES 43

Foo$Proxy Foo

Client
| | Foo$Contrac
1 [ -
foo

] i

foo$PreCondition =u

foo$PostCondition ™ |
e

|

y |

T ' |
' |

' |

' |

Figure 3.1: The proxy-object Foo$Proxy stands-in for Foo and checks pre- and post-
conditions for method bar.

int size;

/%%

* @pre o != null

x @post contains (o)
*/

void add(Object o);

boolean contains(Object o);

}

Listing 3.24: Using custom javadoc-tags to specify assertions.

For instance, a doclet may create the class Buffer$Contract, Listing 3.25, from the Javadoc-
tags in Listing 3.24. For every contract-tag a method has been created which implements
that contract. Later, reflective programming can be used to discover and invoke these
contract methods.

class Buffer$Contract{

boolean Buffer_invariant (){
return size > 0;
}

boolean add_pre(Object o){
return o != null;




STk W N~

44 CHAPTER 3. DESIGN BY CONTRACT IN JAVA

Listing 3.25: A contract-class created by a doclet.

However, when using the proxy-pattern one is obligated to manually create the proxy in-
stances which might pollute the source code and makes it harder to remove DBC checks.
Further, Java’s native proxy support is constrained by the availability of interfaces. In
Java proxy object can only be created for those objects that implement at least one
interface. Consequently, if a type implements no interfaces, Java’s proxy mechanism
cannot create a proxy object for it [Suna].

3.3 Notes on Design by Contract in Java

At its heard, every DBC-implementation wants to avoid that contract checks have to
be implemented manually and aims for a clean separation of code and contracts. The
advantages of this separation are outlined below:

e Separating contracts and code makes contracts clearly identifiable. For instance,
this might ease contract-inheritance or help contract-specific documentation tools.

e A DBC-tool which connects contracts and code, minimises boilerplate code as
it can take care of recursive contract checks and contract violations. Reporting
a contract violation, as one can see in line 3, Listing 3.26, would be done by a
DBC-tool, keeping the actual code simpler.

e Usually, DBC is applied during the development phase so that programming errors
can be detected early. To avoid runtime penalties, DBC-checks are removed or
deactivated in productive use which is a call for a separation of contracts and
code.

public void add(Object o){
if (I(o != null & !full())

throw new PreConditionException ();

/]

Listing 3.26: Manually implementing a pre-condition is not desirable.

Usually, the separation of code and contracts is achieved by having two parts in a DBC-
implementation. First, contracts need to be specified and somehow attached to source
code and, secondly, it must be ensured that these contracts hold during runtime. In terms
of software architecture, the phrases front-end and back-end can be used. Sections 3.3.1
and 3.3.2 classify and characterise different front- and back-ends which are taken from
the tools introduced in 3.2.




3.3. NOTES ON DESIGN BY CONTRACT IN JAVA 45

3.3.1 Front-ends

In a DBC-implementation, the front-end constitutes how contracts are specified. Basi-
cally, two different approaches exist. A contract is specified as some kind of annotation
which is subject to further transformation (see 2.1) or contracts are defined as external
source code which is somehow bound to the actual source.

Java Comments Using Java comments, line- or block-comments, is the most flexible
annotation-based specification mechanism. However, this flexibility comes with
the cost of implementing and maintaining a parser for Java source code just to
discover those comments that represent contracts. In addition, the validity of
contracts, e.g if a field referenced in a contract actually exists, must be checked.

Javadoc-tags When using Javadoc-tags and a doclet, there is no need for a parser since
the doclet API can be used to retrieve the content of the Javadoc-tag and, thus,
the contracts. However, a the validity of contracts is not guaranteed and might
require some coding effort.

Java 5 Annotations Analogue to Javadoc-tags and doclest, Java 5 Annotations can be
processed by an annotation processor which saves the need for a special parser, but,
alike doclets, does not guarantee that a contract is valid. However, when using a
JSR 269 compliant annotation processor a lot information about the structure and
members of annotated types is provided. Hence, contract validity-checks required
less coding effort when an annotation processor is used.

Source Code Specifying contracts as source code is the most straightforward approach
and minimises coding effort when implementing DBC. Contracts are checked for
validity by the compiler and the only thing left to do, is to connect the contract
source code with the actual source code. However, from the DBC-user’s point of
view, it might be harder to relate contracts and code when they are spread over
different source files.

Aspects Using an aspect to represent contracts is actually very similar to representing
contracts as source code. The difference is the fact, that an aspect is linked to
its target differently. This enables more abstract architectures to actually check
contracts (see 3.2.6 and [Dio04]).

3.3.2 Back-ends

In terms of a DBC-implementation, a back-end is a technical component which describes
how contracts can be checked and how violations of contracts can be handled. The
following will outline 5 different approaches to implement such a back-end.

Pre-Processor: A pre-processor based approach generates new source code, based on
annotations present on the original source code. After that, the newly generated



46 CHAPTER 3. DESIGN BY CONTRACT IN JAVA

Annotated Source Code Bytecode

/

Generated Source Code

Java
Virtual
Machine

Pre-
processor

Java
Compiler

Figure 3.2: A pre-processor based approach.

source code can be compiled and executed. This process is shown in Figure 3.2.
A pre-processor might be a free-standing program, a doclet, or an annotation
processor, however, they do have in common that they generate new source files
which are compiled and executed instead of the original, annotated source files.
There are pros and cons that recommend and, respectively, discourage the use of
pre-processors.

e The pre-processor architecture is pretty straightforward and easy to under-
stand. If a doclet (2.1.1) or an annotation processor (2.1.3) is developed some
elaborated APIs can be used and programming effort is kept at a minimum.
However, if these APIs are not used, some development and maintenance ef-
fort has to be undertaken as Java source code needs to parsed and processed.
Especially, the maintenance costs have shown to be a major drawback.

e Usually, a pre-processor adds methods to existent types and / or code to ex-
istent methods. This might hinder debuggers since the code executed, differs
from the code being present in the IDE and confuses programmers because
code appears on the screen they have never seen before. Further using a
pre-processor might mess up stack traces as methods appear which the pro-
grammer did not write.

Bytecode Instrumentation: Usually, bytecode instrumentation is used to connect a
class with its contract. This implies, that the contracts are available as byte-
code at the time the instrumentation is performed. JContractor (3.2.4) adheres
to this pattern as it adds invocations of contract-methods to the beginning of a
method. These contract methods are selected by pattern-based matching process
(e.g. a pre-condition-method is named pre_methodName).

Bytecode instrumentation can be performed statically or dynamically. The latter
one can be implemented with a custom classloader or the instrumentation API
(2.2.3), introduced in Java 5.

The following facts should be considered, when thinking of bytecode instrumenta-
tion to implement contract checks:

e Using bytecode instrumentation requires that the contracts are available as
bytecode. Thus, contracts, specified as comments or annotations (3.3.1), need



3.3. NOTES ON DESIGN BY CONTRACT IN JAVA 47

to be transformed into bytecode first.

e Bytecode instrumentation is very powerful, so that it is possible to keep stack
traces clean and have valid debugging information like line numbers.

Compiler Developing a custom compiler for a DBC-tool is the most challenging task. It
involves writing a parser for the extended Java syntax and a bytecode generation
facility. Further, this implementation approach has high maintenance costs as the
Java programming language and the Java bytecode evolves. The JML Common
Tools use the compiler approach and suffer from the maintenance cost, as they are
still not fully capable of processing Java 5 syntax and, even worst, recommend for
a long period to uninstall Java 5 when using the JML Common Tools.

Proxy Pattern The proxy pattern is a valuable DBC-implementation which is charac-
terised by the fact that proxies have to be instantiated manually and that contracts
must be implemented in, or referenced by these proxies. The latter on might re-
quire a pre-processor, which creates contract-code from a specification. One should
consider that:

e Although proxies can be created natively in Java, the instantiation is not done
automatically. Further, the creation of proxies depends on the availability of
interfaces (3.2.7) and executable contracts.

Aspect-Oriented Programming The cross-cutting concerns addressed by aspect-oriented
programming matches the concept of DBC and, thus, an application for DBC is
evident. Nevertheless, when using AOP one should keep in mind, that it is not only
a different programming paradigm, but also a different programming language. Al-
though most AOP-implementations base on Java, they do have a different syntax
and require other compilers or load-time weavers.

3.3.3 The Semantics of 'Old’

As seen in the previous sections, all design by contract implementations for Java have
an Old-construct. However, the semantics of Old alters, as for complex types state-
capturing may not be trivial. In general, the semantic of Old is to store the state of an
object or primitive type in the pre-state, so that it can be used for further operations,
e.g. comparing an ’old’ state with the current.

A straight forward approach to implement Old is to simply copy the target to a
separate location in memory and keep it there unmodified. In the case of primitive types,
this copy approach works fine as Java supports copying of primitive types natively. For
complex types, however, only the reference would be copied and, thus, modification of
the pre-state cannot be prevented. There are three ways to deal with this:

o A DBC implementation may simply deal with it and advises users accordingly. Es-
pecially, expressions like Old(buffer) == buffer && Old(buffer.size()) != Old(buffer).size()
might be true in this case.



48 CHAPTER 3. DESIGN BY CONTRACT IN JAVA

e User might be encouraged to make use of the clone-method defined in java.lang.Object,
which returns and creates a copy of the calling object [Sund]. However, using
clone() is not that easy, because, by default, it triggers a CloneNotSupportedException.
If an object wants to become cloneable, it has to implement the marker-interface
java.lang.Cloneable which signals to the method clone() that it can be executed [Sund].
Alternatively, one can also overwrite the java.lang.Object.clone()-implementation and
create a custom clone.

e A third alternative is to use immutable classes only. An immutable class, java.-
lang.String for example, cannot change its state once it is created. Every operation
which seems to be state changing, actually returns a new instance of that class.
Consequently, the reference of such an immutable object can safely be stored and
used for state comparisons as it may not change.

In practise, not all classes are immutable, implement java.lang.Cloneable, or overwrite
clone() with the effect that the design by contract implementations have different seman-
tics for the Old-construct. Table 3.2 lists the different semantics of the introduced DBC
implementations. The column reference stands for copying the reference of an object
and clone imposes the use of java.lang.Cloneable. Only Jass enforces the use of clone when

Tool | reference | clone

Jass — °

JML

AOP
Contract4J
jContract

Table 3.2: Overview of Old and its semantics.

the Old-construct is used; all other tools simply store references. Note that the latter
approaches do not exclude the use of clone, it makes it a user specific decision.

3.3.4 Overview

Table 3.3 summarises the main features and properties of the DBC-tools introduced in
this chapter. The last two introduced approaches ‘Using Aspect Oriented Programming’
(Section 3.2.6) and ‘Using the Proxy-Pattern’ (Section 3.2.7) are not included in this
table because they are merely prototypes or concepts and not deployed tools.

From the table it can be seen that the Java Modelling Language (JML), which has
been introduced partially only, is by far the most powerful DBC-tool for Java. Jass offers
a rich set of assertion kinds but has limitations when it comes to inheritance and it does
not support model variables. Contract4J and jContractor are less powerful than JML
or Jass as they offer no or very limited inheritance, do not support model variables, and
support less assertion kinds (e.g. no exceptional post-conditions or loop-invariants).



49

3.3. NOTES ON DESIGN BY CONTRACT IN JAVA

suruersor g
pojuoLr()  joedsy

"S]00} 1oRIYUO)) Aq USISO(] 9} JO MIIAIOA() €°E O[R],

UOT)eJUOWINI}SUT
-Op0291Ag

Torrdwo))

10889001 J-91]

puq-yoed

SUOI}RIOUUY G BAR[

spotjowr pue
9po)) 92IN0g eaef

Ppaseq-juatmo))

Ppoaseq-juammo))

poyIeN ndug

ATuo
owIjuUILI  je  ould
-0 uorjenyesd ‘-

Joridwoy) eaer

Tosred wrogsny)

Iosred wogsny)

UOI}EPI[RA }ORIIUO))

pojTuII] AIoA ‘e

"S9ORJIDIUL 10J JON
"AJUO JuowOUYDL ‘—

9ouRILIOYU]

So[qRIIBA -[OPOIN

sjuerreaur-doory

Iogrjueng)

S9OUBI9JRI S9I0)S ‘@

S9OUBI9JRI S9I09S ‘@

S9OULINJAI SOI09S ‘@

a|qesuo|) Sue|enefl 29
suod> uo spuadop ‘e

P1O

potjeour 19RIjU0d Ul
17NS3Y dqerrea ‘e

WIN9Y]

INOIARTD( [RUOT}

INoIARYoq [eUOl)

e | -dooxo Surpnpour ‘e | -dooxe Furpnour ‘e e | suonIpuo)-1s0J / -o1d
SUTRIJSUOD
. e | A109s1y Surpnpout ‘e e | sjuURLIRAU]
s[007,
[FoRIFUOD) I0p0eIyuo)( | TINL UOUITIO)) sse[



20

CHAPTER 3. DESIGN BY CONTRACT IN JAVA



Chapter

Design Decisions

This chapter reflects the process of creating a new design by contract implementation for
Java matching up with the goals outlined in the first chapter of this thesis. Essentially,
three major goals can be identified for the new design by contract implementation:

e Using Java 5 annotations (see Section 2.1.2, page 10) to add contracts to Java
code, and utilising the annotation processing facilities to process such contract
annotations.

e Focusing on non-functional features like seamless integration, so that writing con-
tracts and running contract-protected code is made easier for users. In particular,
invalid contracts are to be detected during compilation, and failing contracts must
throw meaningful exceptions, especially regarding its origin.

e Using APIs and tools delivered with the Java standard platform (J2SE) and, thus,
being easy to integrate into new and existent Java projects.

The purpose of this chapter is to answer the Why and How questions regarding these
goals. For instance such questions are "Why use Java 5 Annotations?’ or 'How to create
meaningful errors?’

In addition to the discussion on design decisions, the desired feature set of the new
design by contract tool is defined and sorted by priority (Section 4.4). Last but not
least, the newly designed DBC-tool gets a name (Section 4.5).

4.1 Java 5 Annotations & Annotation Processing

In this section the usage of Java 5 annotations is discussed and justified. It is to make
clear why other approaches have been rejected in favour of annotations. The alternatives
have been introduced in the previous chapter (Section 3.3.1 at page 45) and, shortly
listed, are any kind of comment, plain source code, and aspects. Using Java 5 annotations
has two drawbacks causing specifications to be more verbose and less expressive, because

51



52 CHAPTER 4. DESIGN DECISIONS

not all elements of a program can be annotated. The following gives an idea how these
things put a damper on using annotations.

e As seen in Section 2.1.2, Java 5 annotations have a limited set of targets, meaning
they can only be added to methods, classes, and variable declarations. Conse-
quently, specifications like loop-invariants cannot be expressed with Java 5 anno-
tations. Still, with the advent of JSR 308, annotations are going to be allowed on
such program elements, and an annotation based implementation could easily be
extended.

e The type of attributes in annotations is almost restricted to primitives, and their
values must be compile time constants. As a consequence the most expressive
attribute type is the String which may represent an arbitrary specification clause.
However, when using plain Strings further parsing will be required and charac-
ters, that have a special meaning in Java, must be escaped. Parsing the values
of annotations, makes this approach not differ significantly from comment-based
specifications.

On the other side, using Java 5 annotations has some major advantages coming from
the fact that they are pure Java, equipped with a rich processing environment. The
following will outline these advantages:

e The purpose of annotations is to add features or constructs to Java which are not
available by default. Hence, using Java 5 annotations should naturally be the first
choice when design by contract is to be implemented for Java.

e Because annotations are standard Java, common processing tools and utilities are
available. The javadoc-tool, for instance, includes the annotations of an element
in its HTML documentation by default. Further, most IDEs offer functions like
auto-completion or content proposals for annotations.

e In contrast to comments, annotations do have a bytecode representation making
them accessible from raw bytecode and during runtime. Consequently, annotations
can be processed by an arbitrary back-end and do not depend on a pre-processor
which extracts the contract information from comments.

e The Java standard platform is equipped with a rich processing environment which
is integrated into the Java compiler making annotation processing part of the
compilation process. This is the basis for a true language extension, and guarantees
a seamless integration into different build processes and tools.

In conclusion, using Java 5 annotation turns out to be the most suitable approach for
design by contract. Even though some limitations exist, the advantages outweigh them
easily. Especially the fact that annotations are standard Java, that they are undergoing
further development (see JSR 308, Section 2.1.2), and that a processing environment
exists, promotes the usage of Java 5 annotations strongly.



4.2. VALIDATING CONTRACTS 93

4.2 Validating Contracts

In contrast to the previous section which justified the requirement of using Java 5 an-
notations, this section reflects the discussion about finding a way to validate contracts.
Validating contracts is not to be mistaken with checking contracts and can be explained
with the following code snippet:

@SpecCase(

pre = "name — 123",

post = "@Result != null")
public void foo(String name){
}

Both, pre- and post-condition are invalid as, for the first, the pre-condition tries to com-
pare a string with an integer and, for the second, the post-condition refers to the return
value of a void method. Validating contracts is to programmatically find semantically
and syntactically errors in contracts. Usually, contract validation is to ensure that a suc-
ceeding processing step, e.g. source- or bytecode generation, can be performed safely and
produces valid results. From the DBC-tools examination in Section 3.2 three different
approaches for contract validation have been extracted. Those are:

e Having a custom parser which validates the syntax of contracts and, equipped with
context information, validates the semantics is the obvious approach for contract
validation. By context information, type information is meant. For instance, to
validate the pre-condition @Pre(" debit !=-123"), the parameter debit must be known
to be an integer variable.

Usually, a custom parser is used when the contract is specified in a Java comment,
e.g. Jass (Section 3.2.2) and the Common JML Tools (Section 3.2.3) use a custom
parser. The advantages and disadvantages of a custom parser are discussed in
Section 3.3.2 but in almost every case high maintenance costs are to be expected.

e The jContractor-tool (Section 3.2.4) utilises the Java compiler for contract valida-
tion because contracts are expressed as method bodies and, hence, targeted during
the standard compilation process.

Although being appealing, the prerequisite is that contract code is part of an
element which is recognised and compiled by the Java compiler. Without any pre-
processing this is not possible for contracts being embedded in comments or Java
5 annotations.

e When contracts are interpreted on-the-fly by an evaluation engine, no source- or
bytecode needs to be generated and contract validation might be optional. Con-
tractJ (Section 3.2.5), for instance, uses such an approach and does not validate
contracts before they get executed. However, this might lead to an increasing
number of failing contract executions due to invalid contract code.



54 CHAPTER 4. DESIGN DECISIONS

Altogether, every approach has its downside and a more sophisticated way to validate
contracts is desired. The Java compiler is capable of reading source code and to output
bytecode or errors, but the chosen contract representation, Java 5 annotations, is only
partially processed by the compiler. Annotations are translated into bytecode but the
content of attribute values is only checked for its type, not validated to be a sound
assertion. To give an example, the Java compiler does not care if an attribute value
refers to a non-existent method parameter because it does not know the semantics of
that particular attribute. The goal is to make the Java compiler aware of these semantics
and to report violations.

Getting the Java compiler to validate contracts is achieved by using an annotation
processor which performs some pre-processing and utilises the Java compiler AP (see
Section 2.2.2). The UML activity diagram in Figure 4.1 gives an overview about the
necessary steps to check contracts with a combination of an annotation processor and
the Java compiler.

@Pre("o !'= null")
void add(Object 0){ ... } abstract void add(Object o0);

boolean add$pre$1(Object 0){
return o != null;

\ }

create transform
Java model Java model

compile
@ transformed

report errors
X and

warnings

Figure 4.1: UML activity diagram which shows the steps performed to validate a con-
tract.



4.3. CHECKING CONTRACTS AT RUNTIME 55

1. First, a model is created from the information provided by the annotation process-
ing environment. It reflects the structure of the class currently being compiled,
including type information, fields, method signatures, and annotations.

2. The model is modified so that every annotation attribute which represents a con-
tract is transformed into the body of a so called contract method. Contract methods
always return a boolean value, resulting from evaluating the contract code, and
derive its signature and its name from the original method. For instance, the pre-
condition of a method void m(int a) will be represented by a contract method with
the signature boolean m$pre$1(int a). Since the former annotation value is now a
method body it is targeted and thereby validated by the Java compiler!.

3. The transformed model is fed into the Java compiler using the compiler APT (Sec-
tion 2.2.2), and if a compile error or warning is generated, it is linked with the
corresponding annotation and forwarded to the annotation processor.

Note that the bytecode which is generated by the compiler is not used at this stage
and simply ignored. For contract validation only error or warning messages are of
interest.

Because annotation processors are plug-ins for the Java compiler and participate in the
compilation process, they are a well-suited environment for contract validation. There
is no external command required to start the contract validation and the Java infras-
tructure to report errors and warnings can be used. Further, delegating the actual
contract validation to the Java compiler makes an external parser dispensable and, as
an important consequence, when Java evolves, minimal maintenance cost will arise only.

4.3 Checking Contracts at Runtime

The previous section reviewed the design decision about finding a way to validate con-
tracts. In this section, ways to check contracts at runtime are discussed. Checking
contracts is to enforce that the conditions stated by the developer actually hold when
the program runs and to abort the execution as soon as a contract is violated. Similar
to validating contracts, the tools examinations in Section 3.2 showed different ways to
check contracts.

e When using a pre-processor, as in Jass, code which checks the contracts is au-
tomatically created and executed instead of the original source code. Before the
generated code can be executed, it must be compiled.

The disadvantage of this approach is the fact that the code, that is getting executed,

differs from the code that has been written by the programmer.

e The jContractor-tool uses bytecode instrumentation to weave contracts into pro-
gram code. Because in jContractor specification are expressed as plain methods,

!The schemata from which contract methods are derived, are introduced in Section 6.2.



56 CHAPTER 4. DESIGN DECISIONS

bytecode instrumentation is used to connect the actual code with the methods
checking the contracts.

When performing bytecode instrumentation, two things are important. First, the
bytecode for the contracts must be available and, secondly, the bytecode of a
contract must be assigned to the right piece of program code. In jContractor
assigning code with contracts is based on a naming pattern.

e A third alternative for checking contracts is a dynamic evaluation engine as it is
used in Contract4J. This approach proposes to interpret contracts directly without
further pre-processing. Depending on the result an error might be raised, due to
a violated assertion, or execution continues.

For the new DBC-tool, bytecode instrumentation is a good candidate because Java
agents (see Section 2.2.3) guarantee a seamless integration, and because the bytecode for
contracts is a by-product of the contract validation, as discussed in the previous section.
The overall process is very similar to the contract validation with the difference that the
bytecode produced by the compiler is not ignored, but used for bytecode instrumentation.
Figure 4.2 is an updated activity diagram showing that the bytecode is used for a further
processing step. Besides, the entry point is a Java agent (Section 2.2.3 on page 22)
instead of an annotation processor. The following steps are performed:

1. First, a model is created reflecting the structure of the class currently being instru-
mented. This model equals that one produced in step 1 of the contract validation
but it is created from bytecode.

2. The model is transformed, so that contracts are represented as contract methods
being targeted by the Java compiler. This processing step equals the one for
contract validation.

3. Again, the transformed model is fed into the compiler and, if no compile errors
occured, bytecode for each contract is created. This time, the bytecode is not
ignored but kept for the next processing step.

4. Based on the name and signature of the contract method, the class currently being
loaded is getting instrumented with the bytecode created in the previous steps
(1-3). Now, the class is enriched with contract checks and it is getting loaded into
the virtual machine.

Although contract validation and contract checks are very similar, one has to keep in
mind that both are separate processes. Contract validation is performed during the de-
velopment of contracts, analogue to compiling a program, and enabling contract checks
is performed on-the-fly when classes are getting loaded into the virtual machine. Nev-
ertheless, it is to question why the bytecode instrumentation is not performed by the
annotation processor during the compilation phase, avoiding the expensive on-the-fly
instrumentation. This is because the annotation processing environment does not allow
to participate in the bytecode generation process. Annotation processors can access the



4.4. THE FEATURE SET o7

@Pre("o != null")
void add(Object 0){ ... } abstract void add(Object o0);

boolean add$pre$1(Object 0){
return o != null;
\ }

create transform
Java model Java model

[compile errors]

&

compile

transformed
Java model

use byte-

@ code for
instrumen-

tation

Figure 4.2: UML activity diagram which shows the steps performed to enable contract
checks at runtime.

structure of the program being compiled, may issue errors and warnings, and my create
new files, but they cannot change the bytecode that is going to be output. Further,
during compilation class files which are needed for bytecode instrumentation may not
exist yet. Still, on-the-fly bytecode instrumentation can be speed up by saving the byte-
code which is generated during contract validation and omitting steps 1 to 3 by simply
re-using that bytecode.

4.4 The Feature Set

The goals outlined in the beginning of this chapter are non-functional and a list of
functional features is not provided yet. Such a list is composed in this section containing
mandatory and optional features. From the tools examination in Section 3.2 a minimal
set of assertions and expressions can be extracted:

o Invariants & Method assertions — Class invariants, pre-, and normal post-conditions



58 CHAPTER 4. DESIGN DECISIONS

e Specification expressions — Specification expressions to access the return value of
method calls, and to access values from the pre-state in post-conditions

Above shows the most simplified feature set a DBC-tool may have, but to be more
valuable, the following features are to be implemented in a DBC-tool:

e FEzxceptional post-conditions — Providing a mechanism which allows to specify method
behaviour aside from normal termination by having exceptional post-conditions

o User defined error messages — Allowing user defined error messages for each asser-
tion which is used in case the assertion does not hold

o Side-effect freeness — Supporting the notion of pure program elements which can
safely be used in assertions because they are side-effect free

e Quantifiers — Enabling the use of quantifiers to express assertions that relate to a
collection of elements

e Inheritance — Java compliant support for inheritance of assertions which means
that assertions are inherited with respect to the standard visibility modifiers

e Model Variables — Having model variables similar to those that can be found in
JML including rules for inheritance and representation of model variables

o Lightweight Specifications — Provide a way to ease writing specifications by offering
a syntactical lightweight version of the assertions

4.5 Naming

Last but not least, a name for the new design by contract tool must be found. A lot of
tools compose their names from the words Contract, Design, and Java like ContractdJ,
C4J, or jContractor, so that almost all possible combinations have been used already.
The name Jass is derived from the phrase ‘Java with assertions’. Since Jass has been
developed at the same department where this master’s thesis is written, a dependence
on the name Jass is wanted. Jass and the newly design by contract tool implement DBC
for Java. However, the tool developed in this thesis uses recent Java technologies so that
the most suitable name seems to be:

Modern Jass

It reflects its heritage but also points out that its newer. Besides, Modern Jass, when
pronouncing like the music, also denotes a music style that is related to Jazz but breaks

away from its traditional roots. This is a nice analogy between the music styles and the
DBC-tools.



Chapter

Specification Annotations

In this chapter the specification annotations of Modern Jass are introduced and ex-
plained. The purpose of this chapter is to give a precise definition of what Modern Jass
annotations are, and how they are validated and evaluated. Tool developers should use
this chapter as reference, when implementing a DBC-tool that uses specification an-
notations. Before introducing different specification annotations, the general semantics
of Java 5 annotations is discussed. Afterwards, in Section 5.2, the main specification
annotations are covered. A syntactically lighter, but less expressive version of these
annotations, so called flyweight specifications, is introduced in Section 5.3. In Section
5.4, specification specific expressions are introduced, followed by a short section about
container annotations, Section 5.5. At the end, Section 5.6, the intermediate results of
the collaboration between the Modern Jass and the JML 5 project are presented.

5.1 Semantics of Annotations

The general semantics of Java 5 annotations are going to explained in this section.
Chapter 9.7 of the Java language specification defines an annotation as a modifier that
consists of the name of an annotation and zero or more element-value pairs [GJSBO05].
Further it says ‘ The purpose of an annotation is simply to associate information with the
annotated program element’ and thereby defines the default semantics of annotations as
nothing else than additional information for a program element. The interpretation of
annotations is left to third party tools and, hence, the semantics of annotations result
from the processing tools. For Modern Jass, the specification annotations have two
semantics depending on whether a program is compiled or executed. During compilation,
the semantics of specification annotations are, that they may abort compilation with an
error if the content of an annotation is invalid. At runtime, specification annotations are
assertions and their semantics are that assertions must hold, or a runtime error occurs.
In the following sections, for each Modern Jass specification annotation its assertion
kind is identified, and what rules must be fulfilled in order to compile successfully.

59



60 CHAPTER 5. SPECIFICATION ANNOTATIONS

Abstract Annotation Descriptor

In the following, different specification annotations are introduced. The goal of this
introduction is to define the semantics and validation rules for the specification anno-
tations, and thereby providing a reference for third party tool implementers. To keep
things simple and to avoid ambiguity, a description template for annotations has been
used. The following subsections can be found in that template:

Targets:

In the targets subsection, possibly targets for the specification annotation are
listed. Except for some flyweight annotations, targets are always defined via
the java.lang.annotation. Target meta-annotation. The only attribute of this an-
notation is an array of elements of the enumeration java.lang.annotation.Element-
Type.

Attributes:

The attributes subsection introduces all attributes of the corresponding anno-
tation. For every attribute, the name, data type, and possibly default value
are presented. Besides, further restrictions regarding the attribute value, and
the semantics of the attribute are introduced.

Inheritance:

If a specification annotation can be inherited and how inheritance can be
controlled, is presented in the subsection inheritance.

Validation:

The walidation subsection provides rules to validate the corresponding anno-
tation. It clearly states how an annotation is used properly, and in which
case a compile error must be raised.

Evaluation:

How a specification annotation is be evaluated, is stated in the evaluation
subsection. In some cases a further subsection, called default values, is pro-
vided, so that annotations can be evaluated even though their attribute de-
fault values are only partially overwritten.

Desugaring;:

A flyweight annotation, Section 5.3, must provide additional information to
support the transformation into a heavyweight annotation. The desugaring
subsection provides this information.

Further on, most annotation descriptions provide a short introduction and a code sample.



5.2. MAIN SPECIFICATION ANNOTATIONS 61

5.2 Main Specification Annotations

In this section the main specification annotations for Modern Jass are introduced. With
these annotations, the behaviour of Java programs can be specified and validated. The
flyweight annotations, Section 5.3, can be desugared into these annotations.

5.2.1 @lnvariant — jass.modern.Invariant

The @Invariant-annotation is used to add invariants to classes or interfaces. Examples
of invariants are shown in Listing 5.1. The first invariant states that every object in
the array data is not the null-reference, whereas the second invariant says that capacity is
never less than zero and that its visibility is private.

Q@lnvariant (" @ForAll(Object o : data; o != null)")
public class Buffer {

public Object[] data;
@lnvariant(value = "capacity >= 0", visibility = Visibility.PRIVATE)

private int capacity;

}

Listing 5.1: Invariants in Modern Jass.

At runtime invariants are checked before starting a method execution and after returning
from it. In particular, invariants are checked in the case of normal termination and in
the case of abnormal termination, e.g. when an exception has been thrown.

Targets:

The @lInvariant-annotation can be attached to type definitions and field declarations. The
targets are defined via the standard @Target-annotation, so that the placement of the
@Invariant-annotation is validated by the Java compiler. In addition, multiple invariants
can be encapsulated in the container annotation @InvariantDefinitions (see Section 5.5).

Attributes:

e value: @Code java.lang.String

The attribute wvalue is of the type String and ought to hold an arbitrary Java
expression which evaluates to a boolean. In addition, the specification expressions
@ForAll and @Exists can be used in this attribute. More on quantifiers follows in
Sections 5.4.4 and 5.4.5.

There is no default value for the value attribute.

Because the String of this attribute is supposed to be valid Java code, plus spec-
ification expressions, the attribute itself is annotated with the @Code-annotation,
thereby supporting automatic validation of attribute values.




62

CHAPTER 5. SPECIFICATION ANNOTATIONS

visibility: jass.modern.Visibility — default Visibility. TARGET

The wvisibility attribute is analogue to the Java visibility modifiers plus a fifth
value which is Visibility. TARGET. The visibility attributes states what visibility an
invariant has, and based on its value an invariant is getting inherited or not.

The default value of this attribute is Visibility TARGET which means that the in-
variant inherits the visibility of the element it is attached to. If this invariant is a
member of the @InvariantDefinitions-container, the target element of that annotation
is used to derive the invariants visibility.

context: jass.modern.Context — default Context.INSTANCE

The context attribute is used to define that an invariant is checked in instance
contexts only or in static and instance contexts. Static contexts are static meth-
ods and the static object initialiser, instance contexts are non-static methods and
constructors.

The default value of this attribute is Context.INSTANCE, meaning the invariant is
not checked in static contexts.

msg: java.lang.String — default "" (empty string)

The msg attribute can be used to define an arbitrary message which is presented
in case this invariant does not hold.

The default value is the empty string which is done for convenience because it en-
ables the @Invariant-annotation to be used as single element annotation (see Section
2.1.2 on page 14).

Scope:

The scope describes the visible states in which an invariant is checked at runtime. They

are:

the end of a constructor invocation which is not marked with the @Helper annotation
(see Section 5.2.6),

the begin and end of a method invocation which is not marked with the @Helper
annotation,

the end of a static class initialiser if the context attribute is Context.STATIC, and

the begin and end of a static method if the context attribute is Context.STATIC but
not marked with the @Helper annotation.

In particular, visibility modifiers do not affect the scope of an invariant. E.g. a pri-
vate invariant will be checked when a public method is invoked or vice versa. Visibility
modifiers only state if and how an invariant is inherited.



5.2. MAIN SPECIFICATION ANNOTATIONS 63

Note that invariants for constructors of abstract classes may not hold in all cases. If
an invariant refers to a field or a method that is initialised, respectively implemented,
in a subtype, execution of invariants is not possible after the supertype constructor, but
before the subtype constructor, is finished. There are different ways to deal with this
situation:

e When the execution of an invariant fails, the invariant is ignored at that stage.
Currently, the Common JML Tool implementation propagates this solution. How-
ever, when an invariant is private, meaning it is not getting inherited and checked
at the end of the subtype construction, and it fails, it is getting lost for good.

e During contract validation, elements, which are not initialised in states in which
they are part of contract checks, must be identified and must cause a compile error.

e An invariant might be marked as abstract expressing that it cannot be checked until
the corresponding type is fully initialised. An abstact and private invariant will not
be possible, and the corresponding type must be abstract.

With pre- and post-condition, Section 5.2.2, for constructors the same problems might
arise. They can refer to elements which are not initialised in the states in which they
are checked. Currently Modern Jass does not handle these situations and fails with a
specification error.

Inheritance:

When a type is getting subtyped, its invariants are inherited. The rules for invariant
inheritance equal those for member inheritance in Java (chaper 6.4 in [GJSBO05]). In
short, applied to invariants, the rules for inheritance are:

o If the visibility attribute of an invariant is set to Visibility. PUBLIC, it is inherited to
all subtypes. An interface may only have public invariants.

o If the visibility attribute of an invariant is set to Visibility, PROTECTED it is inherited
by all its subtypes.

o If the visibility attribute of an invariant is set to Visibility, PACKAGE_PRIVATE it is
inherited to those subtypes which reside in the same package only.

e An invariant with visibility attribute Visibility.PRIVATE is never inherited.

Validation:

For the validation of an invariant the attributes value and wvisibility are checked. The
msg attribute has no effect on validity of invariants. An invariant cannot be validated
successfully if one of the following rules is violated:



64 CHAPTER 5. SPECIFICATION ANNOTATIONS

e The value of the attribute value must be a valid Java expression which evaluates to
a boolean. It might possibly be extended with the specification expressions @ForAll
and @Exists, see Section 5.4.

e The members referenced by an invariant, e.g. fields or methods, must have the
same or a less restrictive visibility than defined by the wvisibility attribute.

e If the context of an invariant is Context.STATIC it may only reference static members
and elements.

The second rule ensures that an invariant is never inherited without the elements it
refers to. Otherwise a subtype inheriting such an invariant cannot fulfil it, because the
subtype cannot access the members required to satisfy the invariant.

Evaluation:

If a type has more than one invariant, either by directly declaring them or by inheriting
them, the results of their evaluation are connected with logical and. Hence, the effective
invariant for the invariants I, ..., I, is:

Ieff =L AN..NI,

5.2.2 @SpecCase — jass.modern.SpecCase

The ©SpecCase-annotation is used to define pre- and post-conditions for constructors
and methods. In the example below (Listing 5.2), a pre-condition ensures that integers,
passed on to the method number, are always even. Further, the pre-condition of a method
add is shown, which ensures that only non-null references will be added to the buffer, and
that an exception is thrown if the null reference is about to be added.

@SpecCase( pre ="n % 2 = 0", preMsg = "No oddities")

void number(int n){ ... }
Q@Also ({
@SpecCase(pre="o != null”, post="contains(o)"),
@SpecCase(pre="o = null”, signals=NullPointerException.class) })
void add(Object o){ ... }

Listing 5.2: An example of method specifications.

Targets:

With the @Target meta-annotation (Section 2.1.2) the following element types are speci-
fied as valid targets for the @SpecCase annotation:




5.2. MAIN SPECIFICATION ANNOTATIONS 65

e java.lang.annotation.ElementType. CONSTRUCTOR, and
e java.lang.annotation.ElementType. METHOD.

Further, multiple @SpecCases can be encapsulated in a container annotation, called
@Also!, which has the same targets.

Attributes:

nn

e pre: @Code java.lang.String - default "” (empty string)

With the pre attribute a pre-condition can be expressed. The value of this attribute
is ought to be valid Java code which evaluates to a boolean. In addition to the
standard Java syntax, quantifiers, can be used with this attribute, Section 5.4.4
and 5.4.5.

Analogue to invariants, the pre attribute itself is annotated with the @Code anno-
tation and, thereby, supports automated processing.

The default value of this attribute is the empty string which means it should have
no impact on contract evaluation.

e preMsg : java.lang.String - default "” (empty string)

The preMsg attribute can be used to set a message which is used as an error
message in case the pre-condition specified in pre does not hold.

The default value of preMsg is the empty string. If this default value does not
get overwritten, tools are free to insert a meaningful message; e.g. the respective
pre-condition.

® post: @Code java.lang.String - default (empty string)

The post attribute is analogue to the pre attribute but is used to specify a post-
condition. Post-conditions specified with this attribute apply only when the method
terminates normally, e.g. reaching a return statement or the end of the code.

The value must be valid Java code evaluating to a boolean. Besides, the expression
might be extended with the specification expressions @ForAll, @Exists, @Return, and
@Old (see Section 5.4).

The default value of this attribute is the empty string which means it should have
no impact on contract evaluation.

nn

e postMsg : java.lang.String - default "” (empty string)

This attribute is analogue to the preMsg attribute with the difference that it is
used when a post-condition does not hold.

!Naming the container annotation for multiple method specification ‘Also’ comes from the Java
Modelling Language which introduced this term.



66 CHAPTER 5. SPECIFICATION ANNOTATIONS

e signalsPost : @Code java.lang.String - default """ (empty string)

The signalsPost attribute is similar to the post attribute but it is used to define
a post-condition which must hold in case the method execution terminates by an
exception. Further, to check this post-condition, the thrown exception must be
listed by the signals attribute.

The value of this attribute must be valid Java syntax which evaluates to a boolean
and might be extended with the specification expressions @ForAll, @Exists, @Signals,
and @OId (see Section 5.4).

The default value of this attribute is the empty string which means it should have
no impact on contract evaluation.

e signals: java.lang.Class<? extends java.lang.Exception> - default java.lang.Exception

The signals attribute is used to specify an exception which triggers checking the
exceptional post-condition. The overall exceptional post-condition is made up
from the value of this attribute and the exceptional post-condition. Effectively,
the exceptional post-condition is:

posteze = (Exzception instanceof signals = signalsPost)

The default value of this attribute is java.lang.Exception.

e signalsMsg : java.lang.String - default "” (empty string)

This attribute is analogue to the preMsg attribute with the difference that it is
used when an exceptional post-condition does not hold.

o visibility: jass.modern.Visibility - default Visibility. TARGET

The wvisibility attribute is used to specify the visibility of this specification. This
attribute has the same semantics as the visibility attribute of the @lnvariant anno-
tation, see Section 5.2.1.

The default value of the wvisibility attribute is Visibility TARGET and, thereby, the
visibility of the annotated element.

Note that all attributes of the @SpecCase-annotation have default values and, hence, it
can be used as marker annotation (see Section 2.1.2 on page 14). However, such a
specification would not be of any use.

Inheritance:

Method specifications are inherited just like other Java members are inherited. The rules
for inheritance are derived from those for member inheritance in [GJSB05], chapter 6.4.
However, a further specialisation is required because a method specification is always
connected to a certain method. Thus, if a constructor or method is not getting inherited,
its specification cannot be inherited either. On top of that, the visibility attribute allows
a method specification be to excluded from inheritance although its target is inherited.



5.2. MAIN SPECIFICATION ANNOTATIONS 67

Validation:

The @SpecCase-annotation has three attributes (pre, post, and signalsPost) whose values
are expected to be valid Java expressions possibly extended with the specification ex-
pressions defined in Section 5.4. It is a compile error if at least one of the following rules
is not fulfilled:

e Only those specification expression can be used that are specified for the attribute,
e.g. do not use @Return in the pre attribute.

e The value of an attribute which is marked with the @Code must be a valid Java ex-
pression possibly extended with a specification expression. On top, the expression
must evaluate to a boolean.

e A method specification for a static method may not refer to non-static elements.

e Exceptions defined with the signals attribute must be a subtype of java.lang.Runtime-
Exception or a subtype of any of the exceptions declared in the throws clause of the
corresponding constructor or method.

Further, the value of the wvisibility attribute is validated. It must obey two rules or a
compile error occurs:

e The visibility of a method specification cannot be greater, that is ‘more visible’,
than the visibility of its target. Otherwise a method specification could be inherited
without the corresponding method.

e The members referenced by a method specification must have at least the same or
a greater visibility than the specification itself. This is to ensure that a subtype
must not fulfil contracts that reference members it cannot access and, hence, cannot
observe or manipulate.

These rules ensure that a method specification can be executed safely, that it is not
inherited without the corresponding method, and that a specification is not inherited
when the elements it references are not inherited.

Evaluation:

A method specification defines pre- and post-conditions for constructors and methods.
The general contract is that a pre-condition must be fulfilled before starting the method
execution and that a post-condition must be fulfilled before the method finishes its
execution. However, by inheritance or by using the @Also container annotation a method
may have multiple specification cases and a overall pre- and post-condition must be
computed. The overall pre- or post-condition is also called effective pre- respectively
post-condition. The effective pre-condition for the pre-conditions P4, ..., P, is evaluated
by:
Peff =P V..VPF,



68 CHAPTER 5. SPECIFICATION ANNOTATIONS

A single post-condition @ is evaluated by the implication QOIld(P) = @, whereas
@QOId(P) represents the result of evaluating the pre-condition P in the pre-state, thus,
before executing the method. In the case of multiple specification cases the effective
post-condition is given by:

Qerr = (QOWd(P1) = Q1) A ... A(QOId(Py,) = Qn)

It is not a difference if the presence of multiple specification cases is the result of spec-
ification inheritance or by use of the @Also container. Besides, the Liskov Substitution
principle (LSP) is satisfied, which states that a supertype can safely be substituted by
one of its subtypes [LW93]. For design by contract this implies that pre-conditions can
be weakened and that post-conditions can be strengthened.

An alternative effective post-condition is not to use the implication Old(P) = @ but
to simply use @) so that the effective post-condition for the post-conditions Q1, ..., @y is

Qat = Q1N ... NQp

Although the Liskov Substitution principle is satisfied as well, refining contracts is harder
when effective post-conditions are evaluated this way. To give an example, take the
contract in Listing 5.3 which defines that the null-reference may not added to a buffer
and that every non-null element is actually stored in the buffer.

interface IBuffer {

@SpecCase( pre = "o != null”, post = "contains(o0)")
void add(Object o);
}

Listing 5.3: Interface of a buffer not allowing null.

A subtype of the buffer listed above, may allow the null-reference and must redefine
the specification of the add method. As shown in Listing 5.4, null is allowed now and a
placeholder object will be stored for it.

class Buffer implements [Buffer {
private final Object _dummy = new Object();
@SpecCase( pre = "o = null”, post = "contains(_.dummy)”)
void add(Object o){
if(o = null) add(.dummy);

Listing 5.4: Subtype of IBuffer allowing null.

The effective post-condition for the method add would be

Qefp = contains(_dummy) A contains(o)




5.2. MAIN SPECIFICATION ANNOTATIONS 69

which evaluates to false in all cases making this specification impracticable. In contrast,
when post-conditions imply the corresponding pre-condition, the effective post-condition
for the method add changes to:

Qerr = (0 # null = contains(o)) N (o == null = contains(_dummy)

Default Values

Because all attributes have default values it is possible, to have a method specification
that is only partially defined. E.g. a post-condition without a pre-condition, or an
exceptional post-condition without an explicitly defined exception type. In such a case,
the missing parts are set to undefined (undef), which means they have no impact on
evaluation. For the effective pre-condition, an empty pre-condition (undef) can be
omitted:

Peff =P V..VP,Vundef = Peff =P V..VPE,

In particular, if there is no pre-condition at all, the effective pre-condition remains
unchanged. If a method specification has no pre- but a post-condition:

(QOld(undef) = Q) = (true = Q) = Q

is getting evaluated, which means the missing pre-condition has no impact. In case of a
missing post- but present pre-condition, the evaluation of the effective post-condition is
not affected either:

(QOIld(P) = undef) = (QOIld(P) = true) = true

When looking at the default values of the attributes signals and signalsPost, a differenti-
ation between normal and exceptional behaviour must be made. The normal behaviour
expects that during method execution no exception is thrown, and thus the default
for signalsPost is false. Combined with the default of signal, java.lang.Exception, every
exception which is thrown during method execution will result in a failing exceptional
post-condition. However, when signal is explicitly set, the default value for signalsPost
changes to true and, thereby, specifying exceptional behaviour. The following examples
outline the differences between normal and exception behaviour:

@SpecCase( pre = "true”, post = "true”)
public void m(){ ... }

Listing 5.5: A method specification that does not define exceptional behaviour.

For above method specification (Listing 5.5), the occurrence of an exception e will result
in
e instanceof java.lang.Exception = false

meaning, that every exception that occurs, invalids the exceptional post-condition. In
contrast the method specification below (Listing 5.6), will result in an exceptional post
condition which is:

e instanceof java.lang.Exception = true




70 CHAPTER 5. SPECIFICATION ANNOTATIONS

In this case, the exceptional post-condition will evaluate to true and the exception is
simply re-thrown.

T
‘@SpecCase( pre = "true”, post = "true”, signals = Exception.class)
‘public void m(){ ... }

Listing 5.6: A method specification that defines exceptional behaviour.

Note that exceptional behaviour only considers exceptions and not errors. According
to the Java language specification, section 11.2.4 in [GJSBO05], an error is problem from
which a program usually does not recover and it would not make sense to specify such
problems.

Comparing JML with Modern Jass, it can be concluded, that with the varying
default values of the @SpecCase annotation, Modern Jass implicitly defines exceptional
and normal method specifications. In JML this differentiation is made explicit with the
clauses normal_behaviour and exceptional_behaviour.

5.2.3 @Model — jass.modern.Model

A model variable is a variable which is much alike a Java field (see chapter 8.3 in
[GJSBO05]), but accessible by specifications only. A Java field must be declared, can
be assigned a value, and can be read by other expressions. The @Model-annotation is
used to declare a model variable. The declaration consists of the model variable name
and data type. In contracts to a Java field, the visibility of a model variable cannot be
changed and is public by default.

Targets:

The @Model-annotation can only be added to type definitions. This is expressed with the
@Target meta annotation whose value is java.lang.annotation.ElementType. TYPE. Further,
multiple model variable definitions can be encapsulated by the container annotation
©@ModelDefinitions.

Attributes:

e name: java.lang.String
The name of the model variable is defined by this attribute. There is no default
value.

e type: java.lang.Class<?7>

This attribute is used to set the data type of the model variable. The fully qualified
class name plus the .class-literal is required, e.g. java.lang.String.class. If a model
variable is supposed to have a primitive type (char, int, ...), the respective wrapper
classes must be used, e.g. java.lang.Long for the primitive type long.

There is no default value for this attribute.



5.2. MAIN SPECIFICATION ANNOTATIONS 71

Inheritance:

All model variables are inherited to subtypes of the defining type. Therefore, the @Model
annotation has no visibility attribute.

Validation:

All model variables are validated by the following rules and its is a compile error if at
least one rule cannot be validated successfully:

e The name of a model variable must be a valid Java identifier as defined by the
Java language specification, chapter 3.8 in [GJSB05].

e Independent of the data type of a model variable, a name can only be used once
in a class type. Note that this rule also applies to inherited model variables.

e The class type in which a model variable is declared must be abstract or the
corresponding @Represents annotation must be present.

Note that a model variable can only be used if it is represented, meaning, it relates to a
concrete value. The next section will introduce the @Represents annotation which is used
to attach a value to a model variable.

5.2.4 (ORepresents — jass.modern.Represents

The @Represents annotation is the complement of the @Model annotation. While a model
variable is declared by means of the @Model annotation, its value is defined by the
©@Represents annotation.

Targets:

The ©Represents annotation can be added to a type definition or field declaration. The
respective values of the @Target meta annotation are java.lang.annotation.Element Type. TYPE
and java.lang.annotation.ElementType.FIELD. Additionally, multiple @Represents annotations
can be encapsulated in the container annotation @RepresentsDefinitions.

Attributes:

e name: java.lang.String

The name attribute represents the name of the model variable which is targeted
by this annotation. There is no default value for this attribute.

e by: @Code java.lang.String

With the by attribute an expression is defined whose value is attached to the
referenced model variable. The value of this attribute must be valid Java code
which evaluates to the type of the model variable (see type attribute of the @Model
annotation).



72 CHAPTER 5. SPECIFICATION ANNOTATIONS

Specification expressions (Section 5.4) are not allowed for the by attribute.

Validation:

The attributes of the @Represents annotation are validated in combination with the model
variable declarations. It is an error if at least one of the following rules is violated:

e The value of the name attribute must match a model variable declaration (see
@Model annotation) of the same class type or in one of the supertypes (super-class
or implemented interfaces).

There is no default value for this attribute.

e The value of the by attribute must be a valid Java expression which evaluates to the
data type of the corresponding model variable. Expression evaluation and casting
of data types is defined by the Java language specification [GJSBO05], chapter 15.

The default value of the by attribute is the empty string which gets replaced with
the name of the field @Represents is added to. Nevertheless, the type of the field,
must be compatible with the type of the corresponding model variable.

Evaluation:

The value of the @Represents annotation is defined by the attribute by. Note that the value
of the corresponding model variables is not computed once and stored, like a variable
assignment, but evaluated every time the model variable is accessed. In particular, this
means that the value of a model variable might change over time.

5.2.5 @Pure — jass.modern.Pure

The @Pure annotation is a marker annotation which is used in Modern Jass to mark either
a method or a type as side-effect free. A type is side-effect free if all of its methods are
side-effect free. A method is side-effect free if it does not change the externally visible
state of the class, which means that only local variables are allowed to get changed
during execution of a method marked as pure. An example of a side-effect free method
is the equals-method in Listing 5.7.

@Pure public boolean equals(Object other){
return other != null && other = this;
}

Listing 5.7: Side-effect free equals method of a singleton class.

It is strongly encouraged to reference only those methods in contracts, e.g. invariants,
pre-, or post-conditions, which are marked as pure. Otherwise, checking a method
specification might have unforeseen side-effects. Nevertheless, some method might be
side-effect free but the @Pure method cannot be added. For instance, closed-source
libraries or project not support Java 5 annotations, can be named here.




5.2. MAIN SPECIFICATION ANNOTATIONS 73

Evaluation

It is a non trivial task to actually check whether a method is side-effect free and compliant
with its @Pure annotation or not. There are basically two approaches. Static checks
at compile time or runtime checks during execution. However, both approaches have
drawbacks as they are computational expensive. In the following, it is shortly sketched
how these checks could be implemented and what difficulties arise.

e At compile-time a static program-flow analysis can be performed that ensures that
no command that changes a field is getting executed. However, such a flow analysis
must make certain assumptions, e.g. how an execution flow branches, that might
lead to invalid results.

e When checking side-effect freeness at runtime, bytecode instrumentation can be
used. At bytecode level the opcode PUTFIELD exists that changes the value of
a field specified by its fully qualified name. The bytecode instrumentation task
would be to manipulate every class that is loaded by the system under test so that
an event is emitted before the PUTFIELD opcode is executed. Before proceeding,
this event must inform about the current stack trace and the field, including its
declaring class, so that an event receiver can ensure that the field being modified
is not in the scope of an @Pure annotation. The overall process is quite simple as
one can see in Figure 5.1 and is easy to implement. Nevertheless, it imposes a huge
performance penalty which makes it not applicable in practice.

Validate
field change

Change
field

[@Pure, but state change]

Throw

exception

Figure 5.1: UML activity diagram showing how ©@Pure can be checked.



74 CHAPTER 5. SPECIFICATION ANNOTATIONS

5.2.6 @Helper — jass.modern.Helper

The helper annotation is used to mark a method or constructor as helper and hence ex-
clude it from invariant checks. Listing 5.8 shows an application of the @Helper-annotation.

Q@lInvariant("data !'= null”)
Object data[];

public void reinit (){

reset ();
init();
}
@Post(”"data = null")
@Helper void reset (){
data = null;
}

Q@Helper void init(){
data = new Object[capacity];
}

Listing 5.8: Using @Helper-annotation to avoid invariant checks.

The methods reset and init are marked as helper because their invocations collide with
the invariant that states the field data is never the null-reference. The @Helper annotation
can be added to the following element types:

e java.lang.annotation.ElementType. CONSTRUCTOR, and
e java.lang.annotation.ElementType. METHOD.

Nevertheless, constructors and methods annotated with the @Helper-annotation must
be private or a compile error occurs. There is no implicit @Helper-annotation for private
constructors or methods.

Note that pre- and post-conditions are not affected by the @Helper-annotation. For
instance, in the example above (Listing 5.8), the reset method is obligated to fulfil a
post-condition although it is marked as helper.

At this stage, the main specification annotations have been introduced. They can be
used to specify method behaviour and class invariants. Further, model variables and
side-effect freeness, can be expressed with the presented annotations. In the following
section, flyweight annotations are introduced. They are a syntactically lighter but less
expressive way, to define invariants and method behaviour.

5.3 Flyweight Specification Annotations

This section introduces flyweight specification annotations which are syntactically lighter
than the @SpecCase or @lnvariant annotations but less expressive. Still, flyweight annota-
tions might be preferred in case a single pre- or post-condition is to be expressed, or in




5.3. FLYWEIGHT SPECIFICATION ANNOTATIONS 75

case the desired assertion matches a pre-configured flyweight annotation. For instance,
instead of writing ‘@lnvariant("foo != null") Object foo', one can use a flyweight annotation,
which changes the expression to ‘@NonNull Object foo'.

From the semantics point of view, flyweight annotations are syntactical sugar and can
be transformed into ‘heavier’ method specifications or invariants. Transforming flyweight
annotations into their heavier counterparts is called desugaring. In Modern Jass two
different levels of desugaring exist: Level I and Level 2 desugaring. In the following
sections each desugaring process and the corresponding sets of flyweight annotations are
introduced.

5.3.1 Desugaring, Level 1

Level 1 desugaring targets those flyweight annotations that have a direct counterpart in
the @SpecCase annotation. A flyweight annotation, for example, is the @Pre annotation
which corresponds to the pre attribute of the @SpecCase annotation. Because of this,
desugaring level 1 flyweight annotations is pretty straightforward:

1. Collect all level 1 flyweight annotations, compose a new ©@SpecCase annotation of
them, and remove the flyweight annotations.

2. Add the @SpecCase annotation which has been composed in step 1 to the cor-
responding method. In case user-defined @SpecCases already exist, the container
annotation @Also is used.

In Listing 5.9, the level 1 desugaring process is visualised. A single @Pre flyweight
annotation is transformed into a @SpecCase and added to the existing specification.

@Pre ("o !'= null™)

@SpecCase( pre = "o = null”, signals = NullPointerException.class)
void add(Object o){ ... }

!
NGRS ( {

@SpecCase( pre = "o != null”),

@SpecCase( pre = "o = null”, signals = NullPointerException.class) })
void add(Object o){ ... }

Listing 5.9: Desugaring a level 1 flyweight annotation into a @SpecCase annotation.

The following sections introduce the level 1 flyweight annotations currently imple-
mented in Modern Jass.

5.3.2 @Pre - jass.modern.Pre

The @Pre flyweight annotation is used to add a pre-condition to a constructor or method.
Its is equivalent to the pre attribute of the @SpecCase annotation. An example which
specifies that a given method parameter is never less than zero is given in Listing 5.10.



76 CHAPTER 5. SPECIFICATION ANNOTATIONS

©@Pre("index >= 0")
public Object get(int index) { ... }

Listing 5.10: The flyweight annotation @Pre.

Targets:

The @Pre annotation can be added to constructors and methods. These targets have been
defined via the Target meta-annotation, making the Java compiler validate the placement
of the @Pre annotation.

Attributes:

e value: @Code java.lang.String

The value attribute is the only attribute of the @Pre annotation and is used to
express a pre-condition. The value of this attribute must be a valid Java expression
which evaluates to a boolean. On top, the specification expression @ForAll and
@Exists are allowed.

There is no default value for this attribute.

Validation

Validation of the @Pre annotation is the equal to the validation of the pre attribute of
the @SpecCase annotation.

5.3.3 @Post — jass.modern.Post

With the @Post annotation a post-condition can be expressed. It can be used with con-
structor or methods and is equivalent to the post attribute of the @SpecCase annotation.
The example in Listing 5.11 shows a post-condition which ensures that a method never
returns the null reference.

Q@Post(” @Result = null™)
public Object get(int index){ ... }

Listing 5.11: A post-condition expressed with a flyweight specification annotation.

Targets:

The target of the @Post flyweight annotation are equal to those of the @Pre and @SpecCase
annotation. The possible targets for the @Post annotation are constructors and methods.




5.3. FLYWEIGHT SPECIFICATION ANNOTATIONS 7

Attributes:

e value: @Code java.lang.String

The attribute wvalue is used to express a post-condition. It must be a valid Java
expression possibly extended with quantifiers and must evaluate to a boolean.

There is no default value for this attribute.

Validation:

The value of the @Post flyweight annotation is equivalent to the post attribute of the
@SpecCase annotation. Because flyweight annotation are desugared before validation is
performed, the validation of the @Post annotation is the same as for the post attribute
(see Section 5.2.2).

5.3.4 Desugaring, Level 2

In contrast to level 1 flyweight annotations, level 2 annotations have no direct counterpart
in the @SpecCase annotation. Further, a level 2 flyweight annotation does not allow to
express an assertion as Java code, but the annotation itself is expressing the assertion.
Its attributes are used to specify parameters only. To give an example, the flyweight
annotation @Length(long) denotes, simply by its name, that the length of the annotated
element is asserted. An attribute is used to actually specify a value for the length, e.g.
‘@Length(12) int[] i'. In the course of this section, different level 2 flyweight annotations
are introduced, but prior to that, desugaring is explained.

Desugaring level 2 flyweight annotation is more complex than desugaring level 1 fly-
weights because, they must be understood as asserting modifiers for program elements,
and not as plain pre- or post-conditions. By asserting modifier, an assertion is meant,
which must hold for all pre- or post-conditions. In other words, the assertions expressed
by these modifiers strengthen every specification case. Generally, level 2 flyweight anno-
tations can be added to fields, methods, and method parameters. Depending on these
targets the semantics of level 2 flyweight annotations vary and desugaring must adjust.

e java.lang.annotation.ElementType. PARAMETER — Pre-condition*

If a level 2 flyweight annotation is added to a method parameter, it must be
understood as an additional modifier which strengthens pre-conditions. In contrast
to level 1 desugaring, it is not sufficient to simply create a new pre-condition and
to add it to the existing ones. Instead, the assertions from a level 2 flyweight
annotations are merged with every existent pre-condition. In this context, merging
must be understood as the logical connection through and.

If the corresponding method has no pre-conditions, a new one is created from the
level 2 flyweight annotation.



78 CHAPTER 5. SPECIFICATION ANNOTATIONS

e java.lang.annotation.ElementType. METHOD — Post-condition*

Level 2 flyweight annotations that are added to a method are analogue to those
added to a method parameter. In this case, not the pre-conditions but post-
conditons get strengthened with the assertion expressed in the flyweight annota-
tion.

In case no post-conditions exist, assertions are not merged, but a new one is created.

e java.lang.annotation.ElementType.FIELD — Invariant

Whenever a level 2 flyweight annotation is added to a field, an invariant is created
from it. In contrast to above, merging invariants is not required, because the
effective invariant of a class consists of the conjunction of all invariants, see Section
5.2.1.

In Figure 5.12 the level 2 desugaring process is visualised. Two different flyweight
annotations, @Length and @NonNull, have been used, and it can be seen how they are
merged into pre- and post-conditions.

QAlso ({
@SpecCase( post = "Q@Result.length = 0"),
@SpecCase( pre = "index < 0 || index >= data.length"”,

signals = ArraylndexOutOfBoundsException.class) })
@NonNull public String toString( ©@Length (7) Object[] data, int index){

return data[index].toString ();

}
1
QAlso ({
@SpecCase( - = "data.length =— 7",
post = "@Result.length() != 0"),
@SpecCase( - = "data.length = 7
&& (index < 0 || index >= data.length)”,

signals = ArraylndexOutOfBoundsException.class) })
ONonNull public String toString (Object[] data, int index){

return data[index].toString ();

}
!

Q@Also ({
@SpecCase( pre = "data.length = 7",
= "@Result != null && @Result.length !'= 0"),
@SpecCase( pre = "data.length = 7
&& (index < 0 || index >= data.length)",
signals = ArraylndexOutOfBoundsException.class,

88 = OResult != null” ) })



5.3. FLYWEIGHT SPECIFICATION ANNOTATIONS 79

public String toString(Object[] data, int index){

return data[index].toString ();
}
Listing 5.12: Desugaring level 2 flyweight annotations into pre- and post-conditions.
Firstly, the method parameter annotation is desugared, and secondly the method anno-
tation is desugared.

Targets

Generally, level 2 flyweight annotations can be added to the program element types
field, method parameter, and method. These targets are specified using the ©@Target
meta-annotation, but on top of that the data type of these targets must be specifified.
This is because the sole differentiation by the element type might not be sufficient for
level 2 flyweight annotations as they also depend on the data type of a specific element.
To give an example, the @Length annotation cannot be applied to types where measuring
the length is not meaningful. Consequently, that target definition of a level 2 flyweight
annotation must not only specify the element types (field, method, ...), but also the data
type of these element types.

Desugaring-Pattern

The nature of level 2 flyweight annotation is that they express an assertion simply
by their type and not by an user-defined assertion (e.g. @NonNull vs. param != null).
Nevertheless, from level 2 annotations a Java expression must be generated that can be
validated at compile-time and that can be checked at runtime. Code generation is based
on a code pattern that every level 2 flyweight annotation must specify. The pattern
mixes Java code with Modern Jass specific expressions and must evaluate to a boolean.
Specific Modern Jass expressions are used to refer to attribute values, and to refer to
the actual annotated element. The following expressions can be mixed with Java code:

e QAnnotatedElement — Represents the reference of the annotated element, e.g. the
name of a parameter or field.

e OMeasureLength — Evaluates to the length of certain types. Supported types are
Java arrays, Strings, and subtypes of java.lang.Collection. In the latter case, the
method size of the collection type is used.

e OValueOf( attribue ) — A function that expects an attribute name as its argument
and represents the value of that attribute.

An example is the @Length annotation which asserts that the length of an array, java.lang.-
String, or java.util.Collection is equals to the one specified through this annotation. The
desugaring pattern for the @Length annotation is:

©@AnnotatedElement.@MeasureLength == @ValueOf( value )



80 CHAPTER 5. SPECIFICATION ANNOTATIONS

Above pattern is used during desugaring, and when writing ‘@Length( value = 12) int[] i',
the Java expression ‘i.length == 12’ will be generated.

Validation

Because level 2 flyweight annotations are desugared into invariants, pre-, or post-con-
ditions, they are targeted when these assertion get validated. Nevertheless, level 2
flyweight annotations use a stricter target selection mechanism as they not only differ-
entiate by the element (field, parameter, or method) but also by the type of the target
(e.g. primitive types, arrays, certain class types, ...). Consequently, the proper use of
level 2 flyweight annotations must be validated and, hence, it is a compile error if an level
2 flyweight annotation is added to an element whose data type is not compatible with
the types defined by the annotation. This validation step is performed during desugaring
automatically. Furthermore, every flyweight annotation may define additional rules by
which it is validated.

Inheritance

Because flyweight annotations are desugared into equivalent @SpecCase annotations there
is no other support for inheritance than it is for @SpecCases (Section 5.2.2). In particular,
this means that level 2 flyweight annotations are not merged with pre- or post-conditions
of its subtypes.

Distinction between Level 1 & Level 2 Desugaring

Note that level 1 and level 2 flyweight annotations have different semantics when used
in combination or with other specification cases. In particular, the feature of being a
modifier instead of a pre- or post-condition distinguishes level 2 flyweight annotations
from level 1 flyweights. The following code snippets outline and clarify the differences.

@Pre("o != null™)
@SpecCase( pre = "o = null”, signals = NullPointerException.class)
public void addl(Object o){ ... }

Listing 5.13: Having two distinct pre-conditions.

In Listing 5.13, effectively two pre-conditions are specified. One is expressed with the
©@Pre annotation and the other with the pre attribute of the @SpecCase annotation. The
effective pre-condition for the method addl will be (preqss = (0 # null V o == null)). In
contrast, the effective pre-condition of method add2, Listing 5.14, is (precss = (0 # null A
o == null)). This is the result of merging the modifier assertion into every pre-condition
and might puzzle inexperienced users.

‘@SpecCase( pre = "o = null”, signals = NullPointerException.class)
‘public void add2( @NonNull Object o){ ... }

Listing 5.14: Having a single pre-condition which never holds.



5.3. FLYWEIGHT SPECIFICATION ANNOTATIONS 81

In the following subsections every flyweight annotation is presented. Each subsection will
provide an example, information about possibly attributes, and desugaring information
like the desugaring-pattern and a list of allowed data types.

5.3.5 @NonNull — jass.modern.NonNull

The @NonNull flyweight annotation is used to express that a field or parameter may not
be null, or that a method never returns null. Listing 5.15 shows a field data that is marked
with the @NonNull annotation. It is equivalent with an invariant stating ‘data != null".

private ©@NonNull Object[] data;

Listing 5.15: A level 2 flyweight annotation expressing an invariant.

A method signature with the @NonNull annotation is shown in Listing 5.16. It expresses
a pre-condition which ensures that a parameter may not be the null reference.

public void add(@NonNull Object o){ ... }

Listing 5.16: Using the NonNull annotation with a method parameter.

Attributes:

The @NonNull flyweight annotation is a marker annotation, hence it has no attributes.

Desugaring;:
e pattern: @AnnotatedElement != null

During desugaring, the placeholder @AnnotatedElement is substituted with the name
of the annotated field or parameter, or with a reference to the method return value.
The result is Java code, which can be added to an invariant or method assertion.

o targetTypes: { java.lang.Object }

In addition to the @Target meta-annotation, the allowed targets of the @NonNull
annotations are defined by the type of the element. Only java.lang.Object and its
subtypes are allowed.

Note that with java.lang.Object every object is captured even primitives which will
be automatically cast into the corresponding wrapper-class.

Note that @NonNull does make sense for primitive types. Since version 5, Java supports
a technique called ‘auto boxing’ which converts a primitive type automatically into its
wrapper reference type, see section 5.1.7 and 5.1.8 in [GJSB05]. As a consequence, a
primitive type might be a boxed null reference, e.g. when writing ‘int i = (Integer) null’.




82 CHAPTER 5. SPECIFICATION ANNOTATIONS

5.3.6 @Length — jass.modern.Length

The @Length annotation is applicable for Strings, arrays, and all kinds of lists (java.util.List)
and asserts that their length matches the one specified by the annotation. Listing 5.17
gives examples of the @Length annotation.

@Length(12) private List<Integer> data;

public void setPostCode(@Length(8) String str){ ... }

Listing 5.17: Usages of the @Length flyweight annotation.

Attribute:

e value: long

The attribute value is used to define the length of the target. It must be an integer
greater than or equal to zero.

There is no default value for this attribute.

Desugaring;:
e pattern: @AnnotatedElement.@MeasureLength == @ValueOf(value)

The desugaring-pattern above uses three placeholders which stand for the reference
of the target, a length function whose result depends on the type of the target,
and the @ValueOf-function.

o targetTypes: {Java arrays, java.lang.String, java.util.List}

The @Length annotation is applicable for all Java arrays, strings, and classes that
implement the interface java.util.Collection.

5.3.7 @Min — jass.modern.Min

The @Min flyweight annotation can be used to specify the minimal value of a numerical
field, parameter, or method return value. An example where a method parameter is
checked to be greater or equal to zero is shown in Listing 5.18.

public void setAge(@Min(0) int age){ ... }

Listing 5.18: The @Min flyweight annotation.




5.3. FLYWEIGHT SPECIFICATION ANNOTATIONS 83

Attributes:

e value: double

With the attribute value a numerical value, which must be less or equal to the
value of the annotated element, is specified.

There is no default value for this attribute.

Desugaring:
e pattern: @ValueOf(value) < @AnnotatedElement

The pattern uses a placeholder for the annotation target and the @ValueOf evalua-
tion function. For example, the expression '‘@Min(123) int a’ will be desugared into
the Java expression '123 <= a’.

o targetTypes: { java.lang.Number }

The @Min flyweight annotation can be placed on all elements that are numbers.
In Java, these are represented by the wrapper class java.lang.Number which also
matches the numerical primitive types.

5.3.8 ©@Max — jass.modern.Max

The @Max flyweight annotation is the counterpart of the @Min annotation and can be
used to specify the maximum value of numerical types. Listing 5.19 gives an example
how the @Max annotation can be used.

public void openValve(@Max(100) double valve){ ... }

Listing 5.19: The @Max flyweight annotation.

Attributes:

e value: double

The value is used to define a numerical value, which must be greater equal to the
value of the annotated element.

There is no default value for this attribute.

Desugaring;:
e pattern: @AnnotatedElement < @ValueOf( value )

This pattern is used during desugaring so that the placeholder @AnnotatedElement
is replaced with the annotated element and the @ValueOf function is evaluated.



84 CHAPTER 5. SPECIFICATION ANNOTATIONS

o targetTypes: { java.lang.Number }

The @Max annotation can only be used with numerical values. The class java.lang.-
Number is the supertype of all numerical types in Java, which includes primitive
types as well.

5.3.9 ©Range — jass.modern.Range

The @Range flyweight annotation can be seen as the combination of the @Min and @Max
annotation. As shown in Listing 5.20, the @Range annotation can be used to specify the
minimum and maximum value of a numerical type.

ORange(1, 10) int getVote(){ ... }

Listing 5.20: The @Range flyweight annotation

In this case, a post-condition is expressed, stating that the method getVote must return
a value between 1 and 10, inclusively.

Attributes:

e from: double

With the from attribute the lower bound (inclusive) of the range is specified. This
attribute has no default value.

e to: double

With the to attribute the upper bound (inclusive) of the range is specified. There
is no default value for this attribute.

Desugaring:

® pattern:
@ValueOf( from ) < @AnnotatedElement && ©AnnotatedElement < @ValueOf( to )

The desugaring pattern of the @Range annotation uses the @AnnotatedElement ref-
erence and the @ValueOf function. Desugaring results in a conjunction ensuring
the from value to be the lower bound, and the to value not to be exceeded by the
annotated element.

o targetTypes: { java.lang.Number }

The elements annotated with the @Range annotation must have number types. In
Java these are the primitive integer and floating point types and the subtypes of
the java.lang.Number. However, even the primitive numerical types are captured by
this class.




5.4. SPECIFICATION EXPRESSIONS 85

To sum up the previous two sections, it must be concluded that a set of Java 5 an-
notations for specification purposes has been defined. At different levels of complexity
and expressiveness, behaviour of Java programs may be specified with these annota-
tions. In the following sections, specification expressions and container annotations are
introduced. They are the final points in the description of specification annotations for
Modern Jass.

5.4 Specification Expressions

Specification expressions are used to refer to special value like method return values,
or to provide shorthands like quantifiers. They can be used in combination with Java
expressions. This section introduces the specification expressions that are allowed in
Modern Jass specifications.

5.4.1 (@OResult

The @Result specification expression is used to refer to the return value of a method.
Its type equals the method return type, and thus it cannot be used with void methods.
Naturally, @Result can only be used in post-conditions with normal termination. An
example is given in Listing 5.21 where a post-condition ensures that odd numbers are
returned only.

Q@Post (" OResult % 2 =— 1")
public int oddities(){ ... }

Listing 5.21: Accessing the return value of a method in its post-condition.

Instead of @Result, the specification expression @Return can be used too. Both are exactly
the same.

5.4.2 @Signal

The @Signal specification expression is analogue to @Result, but it is used in an excep-
tional post-condition and refers to the exception that has been thrown. In the following
example, Listing 5.22, an exceptional post-condition ensures that every exception, that
is getting thrown, has an error message.

@SpecCase(
signals = Exception.class,
signalsPost = "©@Signal.getMessage() !

= null”)
public void m() throws Exception { ... }

Listing 5.22: An exceptional post-condition accessing its cause.




86 CHAPTER 5. SPECIFICATION ANNOTATIONS

5.4.3 @Old

With the @OId specification expression values from the pre-state can be accessed in the
post-state. The post-condition in Listing 5.23 uses the pre-state value of a variable size
to ensure that it got increased by one.

QPost("@Old(size) + 1 = size")
public void add(Object o){ ... }

Listing 5.23: Using the pre-state values in a post-condition.

With @OlId the state of primitive types and reference types can be captured. For reference
types, however, only the reference is stored and not a real copy. If the referenced objects
are supposed to remain unchanged, than immutable objects or Java’s clone mechanism
is suggested. More on pre-state capturing can be found in Section 3.3.3.

5.4.4 ©ForAll

With the @ForAll specification expression an assertion can be stated which must hold for
every element in a collection of elements. The syntax of the @ForAll expression is based
on the enhanced-for-loop (chapter 14.14.2 in [GJSBO05]), and can be described by the
following grammar and remarks:

QForAll( Type Identifier: Exzpression; Assertion)

Listing 5.24: Grammar of the @ForAll specification expression.

e Type — must be a Java type which is compatible with Ezpression.

Identifier — must be a valid Java identifier, chapter 3.8 in [GJSBO05].

e FEzxpression — must either implement the interface java.util.lterable, or be an array.

Assertion — must be a valid Java expression that evaluates to a boolean.

The boolean expression (Assertion) is checked for every element that is provided by the
Iterable or array. In Listing 5.25 an invariant is shown that ensures that no element in a
collection is the null reference.

Q@lInvariant (" ©ForAll (Number tmp : fNumbers ; tmp != null)")
private Collection <Number> fNumbers;

Listing 5.25: The @ForAll expression used with an invariant.




5.5. CONTAINER ANNOTATIONS 87

5.4.5 (@©Exists

The ©@Exists specification expression is analogue to @ForAll, but it states that an assertion
holds for at least one element in a collection. Again, the grammar is based on Java’s
enhanced-for-loop:

QExists (Type Identifier: FExzpression; Assertion)

Listing 5.26: Grammar of the @Exists specification expression.

The boolean expression specified in Assertion is checked against every element in the
Iterable or array, and the whole expression evaluates to true if at least one element satisfied
Assertion. Listing 5.27 shows a pre-condition that ensures that at least one element in
an integer array has the value zero.

O@Pre(” @Exists(int n : numbers ; n = 0)")
public void foo(int[] numbers){ ... }

Listing 5.27: Pre-condition that uses the @Exists specification expression.

5.5 Container Annotations

This section briefly introduces container annotations. They already have been men-
tioned throughout the previous sections. The sole purpose of a container annotation is
to add multiple annotations of the same type to a single element. Clearly, container
annotations are workarounds and only required because Java does not allow to have the
same annotation more than once on an element (see chaper 9.6 in [GJSBO05] or Sec-
tion 2.1.2). However, with the approval of JSR 308 [CE06] the Java specification might
be changed, so that multiple annotations will be allowed on the same element. This
will make container annotation dispensable. In Modern Jass there are four container
annotations:

e jass.modern.Also — A container for multiple @SpecCase annotations.

e jass.modern.InvariantDefinitions — A container for multiple @lnvariants.

e jass.modern.ModelDefinitions — A container for multiple @Model annotations.

e jass.modern.RepresentsDefinitions — A container for multiple @Represents annotations.

Except for @Also, all container annotations stick to the naming-pattern of appending
‘Definitions’ to the actual annotation name. @Also has been chosen to align with the Java
Modelling Language (JML).

5.6 Outlook — JML 5

Kristina Boysen is a master’s student under Gary T. Leavens at the Iowa State University
where the Java Modelling Language (JML) has been developed. In her master’s thesis,




88 CHAPTER 5. SPECIFICATION ANNOTATIONS

Kristina Boysen works on a Java 5 annotation based version of JML which is supposed
to replace the current, Java comment based, specification syntax. Her project is called
JML 5 and has two main goals:

e Developing a set of Java 5 annotations that can be used for specification purposes
instead of Java comments.

e Updating the Common JML Tools so that they are capable of processing annota-
tions instead of the comment-based specifications.

During the development of Modern Jass and the project announcement of JML 5 quite
a big overlap between the specification annotations of both projects could be identified.
For instance, an @lnvariant annotation or a @SpecCase annotation with very similar or
even equal attributes can be found in both projects. Because of that and to avoid
duplicated efforts, merging the annotations of JML 5 and Modern Jass has been started.
After deciding what annotations are required and how they are named, currently, the
discussion is about attributes. In particular, Modern Jass expects different types for
some attributes. On top, the meta-annotations that Modern Jass uses for desugaring
and contract validation have no complement in the shared annotation set and these parts
of Modern Jass must be refactored.

Nevertheless, merging the specification annotations of both projects is desirable be-
cause a standardised set of Java 5 annotations may spread easier. Users will benefit
from an unified specification language and tool developers do not have to reinvent these
annotations. The current state of the collaboration of JML 5 and Modern Jass, that is
the set of shared annotations, is publicly available in the JML version control system at:
https://jmlspecs.svn.sourceforge.net/svnroot/jmlspecs/trunk/JMLAnnotations.


https://jmlspecs.svn.sourceforge.net/svnroot/jmlspecs/trunk/JMLAnnotations

Chapter

The Modern Jass Tool

This chapter introduces basic concepts of the Modern Jass tool implementation. First,
the software architecture with its components is described. To further the understanding,
some important components and the inner working of Modern Jass are outlined (Section
6.2 and 6.3). Afterwards, the limitations, Modern Jass is coping with, are explained
(Section 6.4). The end of this chapter is about different IDE integrations (Section 6.5),
and about a converter for the Java Modelling Language (Section 6.6).

6.1 Architecture

Basically, Modern Jass is build around a contract compiler. The compiler takes an
instance of a model of the program currently being compiled, transforms all contracts into
Java code, and delegates the transformed model to the actual Java compiler. Depending
on the use case, the contract compiler is fed by an annotation processor, or by a bytecode
instrumentation agent. The UML diagram in Figure 6.1 gives an overview of these
components. Altogether, these four components compose the architecture of the Modern
Jass tool.

e Model — jass.modern.core.model

Usually, Java programs are stored as class- or source-files, but when working pro-
gramatically with Java programs an abstraction of these files is required. The
model component is such an abstraction as it contains interfaces and classes re-
flecting the structure of Java programs. Further a TypeFactory exists, that creates
instances of this model from bytecode, and from models provided by the Java
annotation processing infrastructure (Section 2.1.3).

Note that similar models of the Java programming language exist, and that it could
be questioned why Modern Jass introduces a new one. For instance, popular and

89



90

CHAPTER 6. THE MODERN JASS TOOL

Ea jass.modern.core

«Java compiler»
compile

«Java instrumentation agent» «compiler»
bytecode ContractjavaCompiler

«infrastructure»
transform

mpilationTask

«Java model»
model

% «Annotation processor» /Typgm
apt

Figure 6.1: Component diagram of the Modern Jass architecture.

powerful models are provided by Eclipse JDT and by the annotation processing
infrastructure itself. In contrast to designing a new model, these models could have
been used. Still, the model provided by the annotation processing infrastructure
has not been used, because it is designed to allow read-only access. However,
desugaring and contract creation transform models and require write access. The
Eclipse JDT model has not been used for two reasons. First, the size of the
additional libraries is quite big and will blow up the overall size of Modern Jass
and, secondly, the model offers a lot more feature than actually needed which might
degrade performance. Still, in future is shall be investigated how Modern Jass can
benefit from the code completion and content proposal infrastructures when using
the JDT-based model.

Annotation Processor — jass.modern.core.apt

The annotation processing environment enables Modern Jass to be a compiler plug-
in and thereby participating in the compilation process. The role of an annotation
processor in Modern Jass is to validate contracts and to report errors and warnings
in contracts (Section 4.2). In Java, two annotation processing environments exist,
one has been introduced with Java 5 and an updated version was introduced with
Java 6 (JSR 269). In Java 5 the annotation processing environment is a separate
tool, while Java 6 annotation processors are compiler plug-ins. Modern Jass sup-
ports both annotation processing environments. It uses the information provided
by the annotation processing environments, creates a model from it, and feeds it
into the contract compiler.

Note that although the annotation processors participate in the compilation pro-
cess, contracts are validated only and not woven into the compiled bytecode. This



6.2. CREATING CONTRACT CODE 91

is because annotation processors cannot change the output of the Java compiler
(Section 4.2).

e Bytecode Instrumentation — jass.modern.core.bytecode

In Section 4.3, ‘Checking Contracts at Runtime’, bytecode instrumentation has
been identified to be the most suitable way to check contracts at runtime. In
Modern Jass, the Java instrumentation API (Section 2.2.3) has been utilised to
instrument bytecode with contracts. It builds a model from the bytecode of the
class being loaded, feeds it into the contract compiler, and instruments the class
with the resulting bytecode.

Actually, the steps performed during bytecode instrumentation are very similar
to those performed during annotation processing. The only difference is that the
generated bytecode for contracts is woven into the bytecode of the running pro-
gram. For performance reasons an improved version of Modern Jass should omit
this re-creation of contract bytecode (Section 4.2 and 4.3).

e Contract Compilation — jass.modern.core.compile

The contract compiler is used to validate contract annotations, and compile byte-
code from contracts. Basically, the compiler performs two processing steps, as it,
firstly, transforms the model and, secondly, compiles the resulting Java code. Sec-
tion 6.2 describes this process in more detail. Delegating the transformed model
to the Java compiler is done via the Java Compiler API (JSR 199) which has been
added in Java 6 (Section 2.2.2).

6.2 Creating Contract Code

In the previous section, the contract compiler and the transformations to make the Java
compiler validate contracts have been mentioned. This section will show the fundamen-
tals of the contract compiler, and provides an example which steps through the whole
transformation process. Basically, Java code which is written as an annotation attribute
is not recognised by the Java compiler as Java code, but as a plain string. Consequently,
some transformations must be applied to the original program. Since the Java compiler
targets only code which is in the scope of classes or methods, contracts must be repre-
sented in such a way. For assertions, a single method which returns a boolean and that
implements the contract seems most suitable. By doing so, the code of a contract is
targeted by the compiler and it is checked that the contract evaluates to a boolean. The
overall transformation process consists of the following steps:

1. Desugar Flyweight Annotations
2. Translate Specification Expressions

3. Create Contract-Checking Methods from Annotations



92 CHAPTER 6. THE MODERN JASS TOOL

Contract method creation, step 3, is done following a simple scheme. To ensure that
contract-checking methods have the right variable context, a signature is chosen that is
similar to the signature of the annotated method. Thereby it is ensured that a contract-
checking method can access only those parameters that are available in the context of
that method. Further, a contract-checking method is always added to the same type, so
that fields and other methods can be accessed, too. The schemata for deriving contract-
checking methods is quite simple, and depending of the annotation type a different one
must be used. In listings 6.1, 6.2, 6.3, and 6.4 the schemata for the contract-checking
methods of invariants, pre-conditions, post-conditions, and exceptional post-conditons
are shown'. In these listings placeholders are marked by angle brackets that must
be replaced with values derived from the annotations or their targets. In short, the
substitution rules for the placeholders are:

e <target_ visibility> — The visibility of the contract which is either set via the visibility
attribute or derived from the target.

e <target_name> — The name of the annotated element.
e <target type> — The data type of the annotated element.

e <target _parameter_list> — The list of parameters when the annotated element is a
method or constructor?.

e <target_return_type> — The data type of the return value when the annotated element
is a method.

e <n> — With inheritance or the usage of container annotations, multiple assertions
for a target may exist. Numbers are used to distinguish them.

e <assertion> — The actual assertion code of the contract. Usually the attribute
values marked with the @Code meta-annotation are used (Section 5.2).

e <signal> — The exception type that has been specified for a exceptional post-
condition.

<target_visibility > boolean

<target_name>S$invariant$ <n>(<target_type> <target_-name>) {
return <assertion> ;

}

Listing 6.1: Scheme for an invariant contract method.

'Note that these schemata are simplified as they also catch any exception that is thrown during
contract code execution, and as they enable to access a storage container for pre-state values.
2For methods with no return values (void methods), the type java.lang.Void is used.




6.2. CREATING CONTRACT CODE 93

<target_visibility > boolean

<target_name>$pre$<n>(<target_parameter_list >) {
return <assertion> ;

}

Listing 6.2: Scheme for a pre-condition contract method.

<target_visibility > boolean
<target_name>$post$<n>(
final <target_return_type> _Return, <target_parameter_list>) {

return <assertion> ;

}

Listing 6.3: Scheme for a post-condition contract method.

<target_visibility > boolean
<target_name>$signalsPost$ <n>(
final <signal> _Signal, <target_parameter_list >) {

return <assertion> ;

}

Listing 6.4: Scheme for an invariant contract method.

In the following section the application of the schemata above is shown. It gives an
example which shows step by step how contract code is created so that it can be compiled.

Contract Compiler — The Buffer Example

This section shows the inner working of the contract compiler with the specification of
a buffer (Listing 6.5). In this example the buffer has methods to add an element to it,
and to check whether an element is contained in it or not. Further, a backup storage
and a counter for the next storage location exist. Altogether, the buffer uses invariants,
flyweights (level 1 and 2), and method specifications.

class Buffer {
@NonNull Object[] data

Q@lnvariant ("0 <= next && next <= data.length"”)

int next;
QAlso ({
@SpecCase( pre = "o != null”, post = "contains(o0)"),
©@SpecCase( pre = "o = null”, signals = NullPointerException.class) })
void add(Object o){
}

@Pure




94 CHAPTER 6. THE MODERN JASS TOOL

QPost(” @Result = QExists(Object item : data ; o.equals(item))")
boolean contains(@NonNul